Respuesta :
Answer:
The maximum value of function 1 is 2 and maximum value of function 2 is 4. So, function 2 has a larger maximum.
Step-by-step explanation:
In Function 1 :
[tex]f(x)=-3x^2+2[/tex]
Lending coefficient is negative. It is a downward parabola and vertex is the maximum point.
vertex of a parabola [tex]ax^2+bx+c=0[/tex] is
[tex]vertex=(\frac{-b}{2a},f(\frac{-b}{2a}))[/tex]
On comparing with given equation we ave;
a = -3 , b=0 and c = 2
then;
[tex]x =\frac{-0}{2(-3)} =0[/tex]
Substitute the value of x =0 in [tex]f(x)=-3x^2+2[/tex] we have;
[tex]f(0)=-3(0)^2+2=0+2 = 2[/tex]
⇒Vertex = (0, 2)
⇒the maximum value of function 1 is 2.
In Function 2:
Vertex = (0.5, 4)
⇒the maximum value of function 2 is 4.
Therefore, Function 2 has a larger maximum.