Respuesta :

Ok so 80 and 4x-y form a straight angle.
80+(4x-y)=180
4x-y=100

(4x-y) and (x+2y+10) also form a straight angle, but we know that 4x-y=100
100+x+2y+10=180
x+2y+110=180
x+2y=70

Now we have a system of equation
4x-y=100
x+2y=70

Solve the first equation for y
-y=-4x+100
y=4x-100

Substitute y
x+2(4x-100)=70
x+8x-200=70
9x=270
x=30

Now plug in the known x value
30+2y=70
2y=40
y=20

Final answer: x=30, y=20

Answer:

The values of [tex]x=30^{\circ}[/tex] and [tex]y=20^{\circ}[/tex].

Step-by-step explanation:

A Linear pair is a pair of adjacent angles formed when two lines intersect.

In the given figure, [tex]80^{\circ}[/tex] and  [tex]4x-y[/tex] , [tex]4x-y[/tex] and   [tex]x+2y+10^{\circ}[/tex] form a linear pair.

By linear pairs theorem, we have

[tex]80^{\circ}+4x-y=180^{\circ}[/tex]

[tex]4x-y+x+2y+10^{\circ}=180^{\circ}[/tex]

On solving we get,

[tex]4x-y=100^{\circ}[/tex]     ....(1)

[tex]5x+y=170^{\circ}[/tex]     .....(2)

Now, to solve equation (1) and (2) by simultaneously; we get [tex]x=30^{\circ}[/tex]

putting the value of x in equation 1 we get,

[tex]4x-y=100^{\circ}[/tex]

[tex]4\cdot 30^{\circ}-y=100^{\circ}[/tex]

[tex]120^{\circ}-y=100^{\circ}[/tex]

On simplify we have, [tex]y=20^{\circ}[/tex]

Therefore, the values of x and y are: [tex]30^{\circ}[/tex] and [tex]20^{\circ}[/tex]










ACCESS MORE