find the values of x and y

Answer:
The values of [tex]x=30^{\circ}[/tex] and [tex]y=20^{\circ}[/tex].
Step-by-step explanation:
A Linear pair is a pair of adjacent angles formed when two lines intersect.
In the given figure, [tex]80^{\circ}[/tex] and [tex]4x-y[/tex] , [tex]4x-y[/tex] and [tex]x+2y+10^{\circ}[/tex] form a linear pair.
By linear pairs theorem, we have
[tex]80^{\circ}+4x-y=180^{\circ}[/tex]
[tex]4x-y+x+2y+10^{\circ}=180^{\circ}[/tex]
On solving we get,
[tex]4x-y=100^{\circ}[/tex] ....(1)
[tex]5x+y=170^{\circ}[/tex] .....(2)
Now, to solve equation (1) and (2) by simultaneously; we get [tex]x=30^{\circ}[/tex]
putting the value of x in equation 1 we get,
[tex]4x-y=100^{\circ}[/tex]
[tex]4\cdot 30^{\circ}-y=100^{\circ}[/tex]
[tex]120^{\circ}-y=100^{\circ}[/tex]
On simplify we have, [tex]y=20^{\circ}[/tex]
Therefore, the values of x and y are: [tex]30^{\circ}[/tex] and [tex]20^{\circ}[/tex]