Respuesta :
Look at the picture in the attachment.
Using the Pythagorean theorem, set up a system of three equations:
[tex]x^2+y^2=(12+9)^2 \\ 12^2+z^2=x^2 \\ 9^2+z^2=y^2 \\ \\ x^2+y^2=441 \\ 144+z^2=x^2 \\ 81+z^2=y^2[/tex]
[tex]\hbox{substitute } 144+z^2 \hbox{ for } x^2 \hbox{ and } 81+z^2 \hbox{ for } y^2 \hbox{ in the first equation:} \\ 144+z^2+81+z^2=441 \\ 225+2z^2=441 \\ 2z^2=441-225 \\ 2z^2=216 \\ z^2=\frac{216}{2} \\ z^2=108 \\ z=\sqrt{108} \\ z=\sqrt{36 \times 3} \\ z=6\sqrt{3} \\ z \approx 10.39[/tex]
[tex]81+z^2=y^2 \\ 81+108=y^2 \\ 189=y^2 \\ \sqrt{189}=y \\ \sqrt{9 \times 21}=y \\ y=3\sqrt{21} \\ y \approx 13.75[/tex]
a. The library is approximately 10.39 miles (exactly: 6√3 miles) from the park.
b. The park is approximately 13.75 miles (exactly: 3√21 miles) from the football field.
Using the Pythagorean theorem, set up a system of three equations:
[tex]x^2+y^2=(12+9)^2 \\ 12^2+z^2=x^2 \\ 9^2+z^2=y^2 \\ \\ x^2+y^2=441 \\ 144+z^2=x^2 \\ 81+z^2=y^2[/tex]
[tex]\hbox{substitute } 144+z^2 \hbox{ for } x^2 \hbox{ and } 81+z^2 \hbox{ for } y^2 \hbox{ in the first equation:} \\ 144+z^2+81+z^2=441 \\ 225+2z^2=441 \\ 2z^2=441-225 \\ 2z^2=216 \\ z^2=\frac{216}{2} \\ z^2=108 \\ z=\sqrt{108} \\ z=\sqrt{36 \times 3} \\ z=6\sqrt{3} \\ z \approx 10.39[/tex]
[tex]81+z^2=y^2 \\ 81+108=y^2 \\ 189=y^2 \\ \sqrt{189}=y \\ \sqrt{9 \times 21}=y \\ y=3\sqrt{21} \\ y \approx 13.75[/tex]
a. The library is approximately 10.39 miles (exactly: 6√3 miles) from the park.
b. The park is approximately 13.75 miles (exactly: 3√21 miles) from the football field.
see the attached figure to better understand the problem
Let
z---------> distance from the library to the park in miles
x-------> distance from the park to the to the football field in miles
y-------> distance from the park to Kathy's home in miles
we know that
In the right triangle ABC
Applying the Pythagorean Theorem
[tex] x^{2} +y^{2} =(12+9)^{2} \\ x^{2} +y^{2}=441 [/tex] -----> equation [tex] 1 [/tex]
In the right triangle ABD
Applying the Pythagorean Theorem
[tex] 12^{2} +z^{2} =x^{2} \\ 144 +z^{2}=x^{2} [/tex] -----> equation [tex] 2 [/tex]
In the right triangle BCD
Applying the Pythagorean Theorem
[tex] 9^{2} +z^{2} =y^{2} \\ 81 +z^{2}=y^{2} [/tex] -----> equation [tex] 3 [/tex]
Add equation [tex] 2 [/tex] and equation [tex] 3 [/tex]
[tex] 144 +z^{2}=x^{2} [/tex]
[tex] 81 +z^{2}=y^{2}\\ ------ [/tex]
[tex] 144+81+2z^{2} =x^{2} +y^{2} [/tex] -----> equation [tex] 4 [/tex]
Substitute equation [tex] 1 [/tex] in equation [tex] 4 [/tex]
[tex] 144+81+2z^{2}=441\\ 2z^{2} =441-225\\ 2z^{2}=216\\ z^{2}=108\\ z=\sqrt{108} miles\\ z=10.39 miles [/tex]
Find the value of x
[tex] 144 +z^{2}=x^{2}\\ 144 +\sqrt{108}^{2}=x^{2} \\ x^{2} =144+108\\ x^{2} =252\\ x=\sqrt{252} miles\\ x=15.87 miles [/tex]
therefore
the answer is
Part a) The distance from the library to the park is equal to [tex] 10.39 miles [/tex]
Part b) The distance from the park to the to the football field is equal to [tex] 15.87 miles [/tex]