Respuesta :
[tex]m=m_0 \times (\frac{1}{2})^\frac{t}{T}[/tex]
m - the mass that remains, m₀ - the initial mass, t - time, T - the half-life
[tex]m_0=80 \ g \\ m=2.5 \ g \\ t=40 \ d \\ \\ 2.5=80 \times (\frac{1}{2})^\frac{40}{T} \\ \frac{2.5}{80}=(\frac{1}{2})^\frac{40}{T} \\ \frac{1}{32}=(\frac{1}{2})^\frac{40}{T} \\ (\frac{1}{2})^5=(\frac{1}{2})^\frac{40}{T} \\ 5=\frac{40}{T} \\ 5T=40 \\ T=\frac{40}{5} \\ T=8[/tex]
The half-life is 8 days.
m - the mass that remains, m₀ - the initial mass, t - time, T - the half-life
[tex]m_0=80 \ g \\ m=2.5 \ g \\ t=40 \ d \\ \\ 2.5=80 \times (\frac{1}{2})^\frac{40}{T} \\ \frac{2.5}{80}=(\frac{1}{2})^\frac{40}{T} \\ \frac{1}{32}=(\frac{1}{2})^\frac{40}{T} \\ (\frac{1}{2})^5=(\frac{1}{2})^\frac{40}{T} \\ 5=\frac{40}{T} \\ 5T=40 \\ T=\frac{40}{5} \\ T=8[/tex]
The half-life is 8 days.