Answer and Explanation:
We are given the exponential decay function:
[tex]f(t) = 8000(0.2)^t[/tex]
If we examine how this function changes as t increases:
[tex]\begin{array}{| c | c |}\cline{1-2} t & f(t) \\ \cline{1-2} 0 & 8000 \\ \cline{1-2} 1 & 1600 \\ \cline{1-2} 2 & 320 \\ \cline{1-2} 3 & 64\\ \cline{1-2} \end{array}[/tex]
We can see that:
For example, from t = 1 to t = 2,
f(t) goes from:
[tex]f(1) = 8000(0.2)^1 = 1600[/tex]
to
[tex]f(2) = 8000(0.2)^2\\ \\ \text{ }\ \ \ \ \: = \left[\!\dfrac{}{}8000(0.2)\dfrac{}{}\!\right]\!(0.2) \\ \\ \text{ }\ \ \ \ \: = 1600(0.2) \ \ \text{ or }\ \ \left[\!\dfrac{}{}f(1)\dfrac{}{}\!\right]\!(0.2) \\ \\ \text{ }\ \ \ \ \: = 320[/tex]
So, the constant 0.2 shows that the rate of the function's decay is proportional to its current size by a factor of 0.2.