Respuesta :

To solve for c in terms of a and b, we can rearrange the given equation:
bc + ac = ab
First, we can isolate the term with c by subtracting ab from both sides:
bc + ac - ab = ab - ab
This simplifies to:
bc + ac - ab = 0
Now, we can factor out c:
c(b + a) = 0
To find the value of c in terms of a and b, we can divide both sides by (b + a):
c = 0 / (b + a)
Since any number divided by zero is zero, we get:
c = 0

Answer:

[tex] \frak{c = \dfrac{ab}{(b + a)} }[/tex]

Step-by-step explanation:

Given Equation :

  • bc + ac = ab

We have to find :

  • Value of c in terms of a and b

Solution :

[tex] \sf{ \dashrightarrow \: \: \: \: bc + ac = ab}[/tex]

Taking out c as common factor from bc and ac :

[tex] \sf{ \dashrightarrow \: \: \: \: c(b + a) = ab}[/tex]

Dividing both sides with ( b + a ) :

[tex]\sf{ \dashrightarrow \: \: \: \: \dfrac{c \cancel{( b + a) }}{ \cancel{(b + a})}= \dfrac{ab}{(b + a)}}[/tex]

We get :

[tex]\sf{ \dashrightarrow \: \: \: \: \underline{ \boxed{ \bold{ c= \dfrac{ab}{(b + a)}}}}} \: \: \: \bigstar[/tex]

>>> Therefore , value if c in terms of a and b is "ab/(b+a)".

VERIFICATION :

[tex] \sf{ \longmapsto \: \: \:bc + ac = ab }[/tex]

[tex] \sf{ \longmapsto \: \: \: c(a + b) = ab}[/tex]

Plugging in value of c i.e. ab/(a+b) :

[tex] \sf{ \longmapsto \: \: \: \left(\dfrac{ab}{ \cancel{(a + b)}} \right) \cancel{(a + b)} = ab}[/tex]

Simplifying :

[tex] \sf{ \longmapsto \: \: \: ab = ab}[/tex]

[tex] \sf{ \longmapsto \: \: \: LHS = RHS}[/tex]

[tex]\sf{ \longmapsto \: \: \: Hence, Verified.}[/tex]

ACCESS MORE