Can someone please help me answer this question? It's dealing with Properties of Logarithms. Please see the attachment for more information. I have tried every answer but it seems to be wrong.

Answer:
[tex]\dfrac{1}{2}\log_2(x)+4\log_2\left(y\right)-4\log_2\left(z\right)[/tex]
Step-by-step explanation:
Give logarithmic expression:
[tex]\log_2\left(\dfrac{\sqrt{x}y^4}{z^4}\right)[/tex]
To expand the expression, we can use the properties of logarithms.
[tex]\boxed{\begin{array}{c}\underline{\textsf{Properties of Logarithms}}\\\\\textsf{Product:}\;\;\log_axy=\log_ax + \log_ay\\\\\textsf{Quotient:}\;\;\log_a \left(\dfrac{x}{y}\right)=\log_ax - \log_ay\\\\\textsf{Power:}\;\;\log_ax^n=n\log_ax\end{array}}[/tex]
Begin by using the quotient rule:
[tex]\log_2\left(\sqrt{x}y^4\right)-\log_2\left(z^4\right)[/tex]
Now, apply the product rule to the first term:
[tex]\log_2\left(\sqrt{x}\right)+\log_2\left(y^4\right)-\log_2\left(z^4\right)[/tex]
Rewrite the square root as a fractional exponent:
[tex]\log_2\left(x^{\frac12}\right)+\log_2\left(y^4\right)-\log_2\left(z^4\right)[/tex]
Apply the power rule:
[tex]\dfrac{1}{2}\log_2(x)+4\log_2\left(y\right)-4\log_2\left(z\right)[/tex]
Therefore, the expanded logarithmic expression is:
[tex]\Large\boxed{\boxed{\dfrac{1}{2}\log_2(x)+4\log_2\left(y\right)-4\log_2\left(z\right)}}[/tex]