Can someone please help me answer this question? It's dealing with Properties of Logarithms. Please see the attachment for more information. I have tried every answer but it seems to be wrong.

Can someone please help me answer this question Its dealing with Properties of Logarithms Please see the attachment for more information I have tried every answ class=

Respuesta :

Answer:

[tex]\dfrac{1}{2}\log_2(x)+4\log_2\left(y\right)-4\log_2\left(z\right)[/tex]

Step-by-step explanation:

Give logarithmic expression:

[tex]\log_2\left(\dfrac{\sqrt{x}y^4}{z^4}\right)[/tex]

To expand the expression, we can use the properties of logarithms.

[tex]\boxed{\begin{array}{c}\underline{\textsf{Properties of Logarithms}}\\\\\textsf{Product:}\;\;\log_axy=\log_ax + \log_ay\\\\\textsf{Quotient:}\;\;\log_a \left(\dfrac{x}{y}\right)=\log_ax - \log_ay\\\\\textsf{Power:}\;\;\log_ax^n=n\log_ax\end{array}}[/tex]

Begin by using the quotient rule:

[tex]\log_2\left(\sqrt{x}y^4\right)-\log_2\left(z^4\right)[/tex]

Now, apply the product rule to the first term:

[tex]\log_2\left(\sqrt{x}\right)+\log_2\left(y^4\right)-\log_2\left(z^4\right)[/tex]

Rewrite the square root as a fractional exponent:

[tex]\log_2\left(x^{\frac12}\right)+\log_2\left(y^4\right)-\log_2\left(z^4\right)[/tex]

Apply the power rule:

[tex]\dfrac{1}{2}\log_2(x)+4\log_2\left(y\right)-4\log_2\left(z\right)[/tex]

Therefore, the expanded logarithmic expression is:

[tex]\Large\boxed{\boxed{\dfrac{1}{2}\log_2(x)+4\log_2\left(y\right)-4\log_2\left(z\right)}}[/tex]

RELAXING NOICE
Relax