Respuesta :
The difference between f(x) and g(x) is the +5 . Adding 5 to the end will increase all y-values obtained for the function. The range is all possible y-values of the function. The function is a wave, which moves between high and low points; +5 in the positive y direction and -5 in the negative y direction is increasing the range by 10.
Answer:
Change in function f(x) to g(x): 5 unit up
Range: [2,8]
Step-by-step explanation:
Given:
[tex]f(x)=3\sin2x[/tex]
[tex]g(x)=3\sin(2x)+5[/tex]
First we have to see the change from f(x) to g(x).
[tex]g(x)=3\sin(2x)+5[/tex]
[tex]g(x)=f(x)+5[/tex]
[tex]f(x)=3\sin2x[/tex]
If we shift f(x) 5 unit up to get g(x)
[tex]g(x)=3\sin(2x)+5[/tex]
Effect: f(x) shift 5 unit up
Now we see change in range.
Range of [tex]f(x)=3\sin2x[/tex]
[tex][-3,3][/tex]
Graph shift 5 unit up.
So, Range will shift 5 unit up.
Range of [tex]g(x)=3\sin(2x)+5[/tex]
[tex][-3+5,3+5]\Rightarrow [2,8][/tex]
Hence, The range of g(x) is [2,6]