Respuesta :

hello : 
the third table because ; 
f(-6) = 2
f(1) =1
f(2) =0
f(3) =-1
f(6) =-2

Answer:

The table in the attached figure

Step-by-step explanation:

we have

[tex]h(x)=\sqrt[3]{-x+2}[/tex]

Using a graphing tool

see the attached figure

The x-intercept of the function is the point [tex](2,0)[/tex] (value of x when the value of the function is equal to zero)

The y-intercept of the function is the point [tex](0,1.26)[/tex] (value of the function when the value of x is equal to zero)

therefore

First table

The y-intercept of the function is the point [tex](0,2)[/tex]

so

Is not represent the function h(x)

Second table

The y-intercept of the function is the point [tex](0,2)[/tex]

so

Is not represent the function h(x)

Third table

The x-intercept of the function is the point [tex](2,0)[/tex]

so

Could be represent the function h(x)

Fourth table

The x-intercept of the function is the point [tex](-2,0)[/tex]

so

Is not represent the function h(x)

Verify the third table

For [tex]x=-6[/tex]

Find the value of y

substitute the value of x

[tex]h(-6)=\sqrt[3]{-(-6)+2}=2[/tex] -----> is ok

For [tex]x=1[/tex]

Find the value of y

substitute the value of x

[tex]h(1)=\sqrt[3]{-(1)+2}=1[/tex] -----> is ok

For [tex]x=3[/tex]

Find the value of y

substitute the value of x

[tex]h(3)=\sqrt[3]{-(3)+2}=-1[/tex] -----> is ok

For [tex]x=10[/tex]

Find the value of y

substitute the value of x

[tex]h(10)=\sqrt[3]{-(10)+2}=-2[/tex] -----> is ok

The third  table represent the function h(x) ------> see the attached figure

Ver imagen calculista