Respuesta :

Answer:

Length of CD is 10.7 cm

Step-by-step explanation:

we are given to find length of CD

Calculation of CD:

Firstly, we will find AC

In triangle ABC, we can use trig

[tex]sin(30)=\frac{AC}{10}[/tex]

[tex]AC=10sin(30)[/tex]

[tex]AC=5[/tex]

now, we can find CD

In triangle ACD , we can use trig

[tex]cot(25)=\frac{CD}{AC}[/tex]

[tex]CD=ACcot(25)[/tex]

now, we can plug AC=5

[tex]CD=5cot(25)[/tex]

[tex]CD=10.7[/tex]

Answer:

AC = 5 cm ,  CD = 10.7 cm.

Step-by-step explanation:

Given : A triangle with a side 10 cm and angle 30 and 25.

To find  : Length of AC and CD.

Solution  We have given that a triangle

By the trigonometric ratio

Sin ( theta) = [tex]\frac{opposite}{hypotnuse}[/tex].

Sin (30) =  [tex]\frac{AC}{10}[/tex].

Plug the value of sin (30)

[tex]\frac{1}{2}[/tex] = [tex]\frac{AC}{10}[/tex].

On multiplying by 10 both sides

Then AC = 5 cm.

By using AC we will find CD

Cot (theta) =  [tex]\frac{adjecent}{opposite}[/tex].

Cot (25) =  [tex]\frac{CD}{5}[/tex].

2.144 =   [tex]\frac{CD}{5}[/tex].

On multiplying both sides by 5

CD = 10.7 cm

Therefore, AC = 5 cm ,  CD = 10.7 cm.