let's say
a = 215,658
ok... so.. he first lost 1/3 of that
[tex]\bf \textit{\underline{lost} }\frac{1}{3}a\qquad \qquad a-\cfrac{1}{3}a\implies a-\cfrac{a}{3}\implies \cfrac{3a-a}{3}\implies \cfrac{2a}{3}
\\\\\\
\textit{then he \underline{gained} }\frac{1}{2}\textit{ of }\frac{2a}{3}\qquad \qquad \cfrac{2a}{3}+\cfrac{\frac{2a}{3}}{2}\implies \cfrac{\frac{2a}{3}}{\frac{2}{1}}
\\\\\\
\cfrac{2a}{3}+\cfrac{2a}{3}\cdot \cfrac{1}{2}\implies \cfrac{2a}{3}+\cfrac{2a}{6}\implies \cfrac{4a+2a}{6}
\\\\\\
\cfrac{6a}{6}\implies \boxed{a}\implies 215,658[/tex]
so, his nickname might just beĀ even steven, because, he ended up with the same original amount after the 1/2 bump.