remember, you can do anything to an equaiton as long as you do it to both sides
also
[tex]log(a^x)=xlog(a)[/tex]
and[tex]ln(x)=log_e(x)[/tex]
ok
if no base is stated, assume log=[tex]log_{10}[/tex]
I'm going to use ln instead of log because ln is easier to find on a calculator
[tex]3^{x+1}=100[/tex]
take ln of both sides
[tex]ln(3^{x+1})=ln(100)[/tex]
[tex](x+1)ln(3)=ln(100)[/tex]
[tex]xln(3)+1ln(3)=ln(100)[/tex]
minus ln(3) both sides
[tex]xln(3)=ln(100)-ln(3)[/tex]
divide both sides by ln(3)
[tex]x=\frac{ln(100)}{ln(3)}-1[/tex]
or if you wanted to use log base 10
[tex]3^{x+1}=100[/tex]
take log both sides
[tex]log(3^{x+1})=log(100)[/tex]
[tex]log(3^{x+1})=2[/tex]
[tex](x+1)log(3)=2[/tex]
[tex]xlog(3)+log(3)=2[/tex]
minus log(3) both sides
[tex]xlog(3)=2-log(3)[/tex]
divide both sides by log(3)
[tex]x=\frac{2}{log(3)}-1[/tex]
so
[tex]x=\frac{ln(100)}{ln(3)}-1[/tex]
or if you wanted log
[tex]x=\frac{2}{log(3)}-1[/tex]