Respuesta :
[tex]\bf \textit{equation of a circle}\\\\
(x-{{ h}})^2+(y-{{ k}})^2={{ r}}^2
\qquad
\begin{array}{lllll}
center\ (&{{ h}},&{{ k}})\qquad
radius=&{{ r}}\\
&-2&5&4
\end{array}[/tex]
Answer:
equation of circle (x +2)² + (x + 5)² = 16.
Step-by-step explanation:
Given : A circle has its center at (-2, 5) and a radius of 4 units.
To find : What is the equation of the circle.
Solution : We have given center at (-2, 5) and radius = 4 units .
Standard form of circle : (x -h)² + (x + k)² = r²
Where, ( h, k) is center , r = radius .
Plugging the values of h , k and r in standard equation
(x -(-2))² + (x + 5)² = (4)²
(x +2)² + (x + 5)² = 16.
Therefore, equation of circle (x +2)² + (x + 5)² = 16.