Respuesta :

rynL
I  solved this via the Pythagorean theorem. Side LM is 5 and side NM is 3.16. Side NL is also 3. 3+5+3.16=11.16. The decimal form of 8+sqrt(10) is 11.16. D is the answe



we know that

The distance 's formula between two points is equal to

[tex]d=\sqrt{(y2-y1)^{2}+(x2-x1)^{2}}[/tex]

Step [tex]1[/tex]

Find the distance MN

[tex]M(-2,1)\\N(-1,4)[/tex]

Substitute in the distance's formula

[tex]d=\sqrt{(4-1)^{2}+(-1+2)^{2}}[/tex]

[tex]d=\sqrt{(3)^{2}+(1)^{2}}[/tex]

[tex]dMN=\sqrt{10}\ units[/tex]

Step [tex]2[/tex]

Find the distance NL

[tex]N(-1,4)\\L(2,4)[/tex]

Substitute in the distance's formula

[tex]d=\sqrt{(4-4)^{2}+(2+1)^{2}}[/tex]

[tex]d=\sqrt{(0)^{2}+(3)^{2}}[/tex]

[tex]dNL=3\ units[/tex]

Step [tex]3[/tex]

Find the distance LM

[tex]L(2,4)\\M(-2,1)[/tex]

Substitute in the distance's formula

[tex]d=\sqrt{(1-4)^{2}+(-2-2)^{2}}[/tex]

[tex]d=\sqrt{(-3)^{2}+(-4)^{2}}[/tex]

[tex]dLM=5\ units[/tex]

Step [tex]4[/tex]

Find the perimeter of the triangle LMN

we know that

The perimeter of a triangle is equal to the sum of the three length sides

In this problem

[tex]Perimeter=MN+NL+LM[/tex]

substitute the values in the formula

[tex]Perimeter=(\sqrt{10}+3+5)\ units[/tex]

[tex]Perimeter=(8+\sqrt{10})\ units[/tex]

therefore

the answer is the option D

the perimeter of the triangle LMN is equal to [tex](8+\sqrt{10})\ units[/tex]