Respuesta :
I solved this via the Pythagorean theorem. Side LM is 5 and side NM is 3.16. Side NL is also 3. 3+5+3.16=11.16. The decimal form of 8+sqrt(10) is 11.16. D is the answe
we know that
The distance 's formula between two points is equal to
[tex]d=\sqrt{(y2-y1)^{2}+(x2-x1)^{2}}[/tex]
Step [tex]1[/tex]
Find the distance MN
[tex]M(-2,1)\\N(-1,4)[/tex]
Substitute in the distance's formula
[tex]d=\sqrt{(4-1)^{2}+(-1+2)^{2}}[/tex]
[tex]d=\sqrt{(3)^{2}+(1)^{2}}[/tex]
[tex]dMN=\sqrt{10}\ units[/tex]
Step [tex]2[/tex]
Find the distance NL
[tex]N(-1,4)\\L(2,4)[/tex]
Substitute in the distance's formula
[tex]d=\sqrt{(4-4)^{2}+(2+1)^{2}}[/tex]
[tex]d=\sqrt{(0)^{2}+(3)^{2}}[/tex]
[tex]dNL=3\ units[/tex]
Step [tex]3[/tex]
Find the distance LM
[tex]L(2,4)\\M(-2,1)[/tex]
Substitute in the distance's formula
[tex]d=\sqrt{(1-4)^{2}+(-2-2)^{2}}[/tex]
[tex]d=\sqrt{(-3)^{2}+(-4)^{2}}[/tex]
[tex]dLM=5\ units[/tex]
Step [tex]4[/tex]
Find the perimeter of the triangle LMN
we know that
The perimeter of a triangle is equal to the sum of the three length sides
In this problem
[tex]Perimeter=MN+NL+LM[/tex]
substitute the values in the formula
[tex]Perimeter=(\sqrt{10}+3+5)\ units[/tex]
[tex]Perimeter=(8+\sqrt{10})\ units[/tex]
therefore
the answer is the option D
the perimeter of the triangle LMN is equal to [tex](8+\sqrt{10})\ units[/tex]