Answer:
[tex]\dfrac{\sin(A)-\cos(A)}{\sin(A)+(\cos(A)}[/tex]
Step-by-step explanation:
We are simplifying the trigonometric expression:
[tex]\dfrac{\left(\dfrac{}{}\sin(A)-\cos(A)\dfrac{}{}\right)^2}{(\sin(A))^2-(\cos(A))^2}[/tex]
First, we can expand the denominator using our knowledge of a difference of squares:
↓↓↓
[tex]\dfrac{\left(\dfrac{}{}\sin(A)-\cos(A)\dfrac{}{}\right)^2}{\left(\dfrac{}{}\sin(A)+(\cos(A)\dfrac{}{}\right)\!\!\left(\dfrac{}{}\sin(A)-(\cos(A)\dfrac{}{}\right)}[/tex]
Then, we can cancel the common term [tex]\sin(A)-\cos(A)[/tex] in both the numerator and denominator:
[tex]\boxed{\dfrac{\sin(A)-\cos(A)}{\sin(A)+(\cos(A)}}[/tex]