Respuesta :

Answer:

[tex]\dfrac{\sin(A)-\cos(A)}{\sin(A)+(\cos(A)}[/tex]

Step-by-step explanation:

We are simplifying the trigonometric expression:

[tex]\dfrac{\left(\dfrac{}{}\sin(A)-\cos(A)\dfrac{}{}\right)^2}{(\sin(A))^2-(\cos(A))^2}[/tex]

First, we can expand the denominator using our knowledge of a difference of squares:

  • [tex]a^2-b^2=(a+b)(a-b)[/tex]

↓↓↓

[tex]\dfrac{\left(\dfrac{}{}\sin(A)-\cos(A)\dfrac{}{}\right)^2}{\left(\dfrac{}{}\sin(A)+(\cos(A)\dfrac{}{}\right)\!\!\left(\dfrac{}{}\sin(A)-(\cos(A)\dfrac{}{}\right)}[/tex]

Then, we can cancel the common term [tex]\sin(A)-\cos(A)[/tex] in both the numerator and denominator:

[tex]\boxed{\dfrac{\sin(A)-\cos(A)}{\sin(A)+(\cos(A)}}[/tex]

ACCESS MORE
EDU ACCESS
Universidad de Mexico