Answer:
[tex]\textsf{c)}\quad 5\sqrt{11}[/tex]
[tex]\textsf{g)}\quad \sqrt{275}[/tex]
[tex]\textsf{h)}\quad \sqrt{18^2-7^2}[/tex]
[tex]\textsf{j)}\quad \sf Approx.\; 16.6[/tex]
Step-by-step explanation:
To find the length of side OG in right triangle ODG, we can use the Pythagorean Theorem:
[tex]\boxed{\begin{array}{l}\underline{\textsf{Pythagorean Theorem}}\\\\a^2+b^2=c^2\\\\\textsf{where:}\\\phantom{ww}\bullet\;\textsf{$a$ and $b$ are the legs of the right triangle.}\\\phantom{ww}\bullet\;\textsf{$c$ is the hypotenuse (longest side) of the right triangle.}\\\end{array}}[/tex]
In this case:
- a = OD = 7
- b = OG
- c = DG = 18
Substitute the values into the formula:
[tex]7^2+OG^2=18^2[/tex]
Solve for OG:
[tex]OG^2=18^2-7^2\\\\\\OG=\sqrt{18^2-7^2}\\\\\\OG=\sqrt{324-49}\\\\\\OG=\sqrt{275}\\\\\\OG=16.5831239517...\\\\\\OG\approx 16.6\; \sf (nearest\;tenth)[/tex]
Therefore, the exact length of OG is [tex]\sqrt{275}[/tex], which is approximately 16.6 (rounded to the nearest tenth).
We can simplify the radical by rewriting 275 as the product of its prime factors:
[tex]275 = 5 \times 5 \times 11\\\\275=5^2 \times 11[/tex]
Therefore:
[tex]\sqrt{275}=\sqrt{5^2 \times 11}[/tex]
[tex]\textsf{Apply the radical rule:} \quad \sqrt{ab}=\sqrt{\vphantom{b}a}\sqrt{b}[/tex]
[tex]\sqrt{275}=\sqrt{5^2}\sqrt{11}\\\\\sqrt{275}=5\sqrt{11}[/tex]
So, the expressions that represent the length of OG are:
[tex]\textsf{c)}\quad 5\sqrt{11}[/tex]
[tex]\textsf{g)}\quad \sqrt{275}[/tex]
[tex]\textsf{h)}\quad \sqrt{18^2-7^2}[/tex]
[tex]\textsf{j)}\quad \sf Approx.\; 16.6[/tex]