Respuesta :

let's do this by partial sums

[tex](\frac{1}{5}-\frac{1}{6})+(\frac{1}{6}-\frac{1}{7})+(\frac{1}{7}-\frac{1}{8})+[/tex] [tex](\frac{1}{8}-\frac{1}{9})+(\frac{1}{9}-\frac{1}{10})+...(\frac{1}{n+1}-\frac{1}{n+2})[/tex] etc
we notice that there are pairs that cancel
[tex]\frac{1}{5}+(-\frac{1}{6}+\frac{1}{6})+(-\frac{1}{7}+\frac{1}{7})+(-\frac{1}{8}+[/tex] [tex]\frac{1}{8})+(-\frac{1}{9}+\frac{1}{9})+(-\frac{1}{10}+...\frac{1}{n+1})+(-\frac{1}{n+2})[/tex]
we will then be left with the end terms which are
[tex]\frac{1}{4+1}-\frac{1}{ \infty+2}[/tex]
[tex]\frac{1}{ \infty+2}[/tex] basically simplifies to 0 because it is basically 1/infintiy

so we are left with [tex]\frac{1}{4+1}[/tex] or [tex]\frac{1}{5}[/tex]

the sum is [tex]\frac{1}{5}[/tex]