Find the equation of the quadratic function that has vertex at (-3,6) and passes through the point (2,-11).

Respuesta :

Answer:

The quadratic equation is [tex]\displaystyle\bf y=-\frac{17}{25} x^2-\frac{102}{25} x-\frac{3}{25}[/tex].

Step-by-step explanation:

To find the quadratic equation that has a vertex at (-3, 6) and passes through the point (2, -11), we assume that the quadratic equation is:

[tex]\boxed{y=ax^2+bx+c}[/tex]

Given:

  • vertex at (-3, 6) which means:

        (i) the axis of symmetry is x = -3

        (ii) the function passes through the point (-3, 6)

  • the function passes through the point (2, -11)

Using these informations, we can create a system of equation:

(1) axis of symmetry is x = -3

  The formula of axis of symmetry: [tex]\boxed{x=-\frac{b}{2a} }[/tex]

   [tex]\displaystyle -\frac{b}{2a} =-3[/tex]

   [tex]b=6a\ ...\ [1][/tex]

(2) passes through the point (-3, 6)

    [tex]y=ax^2+bx+c[/tex]

    [tex]6=a(-3)^2+b(-3)+c[/tex]

    [tex]9a-3b+c=6\ ...\ [2][/tex]

(3) passes through the point (2, 11)

    [tex]y=ax^2+bx+c[/tex]

    [tex]11=a(2)^2+b(2)+c[/tex]

    [tex]4a+2b+c=-11\ ...\ [3][/tex]

Substituting [1] into [2]:

[tex]9a-3b+c=6[/tex]

[tex]9a-3(6a)+c=6[/tex]

[tex]-9a+c=6\ ...\ [4][/tex]

Substituting [1] into [3]:

[tex]4a+2b+c=-11[/tex]

[tex]4a+2(6a)+c=-11[/tex]

[tex]16a+c=-11\ ...\ [5][/tex]

Combining [4] & [5]

[tex]-9a+c=6[/tex]

[tex]16a+c=-11[/tex]

----------------------- (-)

   [tex]-25a=17[/tex]

         [tex]\displaystyle\bf a=-\frac{17}{25}[/tex]

Substitute the value of a to [1]

[tex]b=6a[/tex]

[tex]\displaystyle b=6\left(-\frac{17}{25} \right)[/tex]

[tex]\bf\displaystyle b=-\frac{102}{25}[/tex]

Substitute the values of a and b to [3]

[tex]4a+2b+c=-11[/tex]

[tex]\displaystyle 4\left(-\frac{17}{25} \right)+2\left(-\frac{102}{25} \right)+c=-11[/tex]

[tex]\displaystyle\bf c=-\frac{3}{25}[/tex]

Therefore, the quadratic equation is [tex]\displaystyle\boxed{y=-\frac{17}{25} x^2-\frac{102}{25} x-\frac{3}{25}}[/tex]

ACCESS MORE