Respuesta :

Answer:

The equation is x + 4y + 8 = 0.

Step-by-step explanation:

To find the equation of a line parallel to x+4y=3 and passing through the point (8,-4), we first find the gradient of the given equation by converting it to the slope intercept form.

Slope intercept form: [tex]\boxed{y=mx+c}[/tex]

where,

  • m = gradient
  • c = y intercept

[tex]x+4y=3[/tex]

[tex]4y=-x+3[/tex]

[tex]\displaystyle y=-\frac{1}{4} x+\frac{3}{4}[/tex]

Therefore, the gradient of x+4y=3 is [tex]\bf -\frac{1}{4}[/tex]

For parallel lines, they have the same gradient. Therefore, the new equation also has a gradient of [tex]-\frac{1}{4}[/tex]

For linear equation with given gradient [tex](m)[/tex] and 1 point [tex](x_1,y_1)[/tex], the equation will be:

[tex]\boxed{y-y_1=m(x-x_1)}[/tex]

Given:

  • [tex]m=-\frac{1}{4}[/tex]
  • [tex]x_1=8[/tex]
  • [tex]y_1=-4[/tex]

Then, the equation will be:

[tex]y-y_1=m(x-x_1)[/tex]

[tex]\displaystyle y-(-4)=-\frac{1}{4} (x-8)[/tex]

[tex]-4(y+4)=x-8[/tex]

[tex]-4y-16=x-8[/tex]

[tex]\bf x+4y+8=0[/tex]

ACCESS MORE