A shipping container in the shape of a right rectangular prism has a base with an area of 42 square feet. The height of the container is 5 3/4 feet. What is the volume in cubic feet of the shipping containers

Respuesta :

Step-by-step explanation:

we know volume of rectangular prism = height *area

here volume=42*5.75

=241.5 cubic feet

Answer:

[tex]\rm 241\frac12\; cubic\;feet[/tex]

Step-by-step explanation:

To find the volume in cubic feet of the shipping container, we can use the formula for the volume of a rectangular prism:

[tex]\large\boxed{\rm Volume = Base\;area \times Height}[/tex]

Given that the height is given as a mixed fraction, first convert it to an improper fraction:

[tex]5 \frac{3}{4} = 5 + \dfrac{3}{4} = \dfrac{20}{4} + \dfrac{3}{4} = \dfrac{23}{4}[/tex]

Now, substitute the base area of 42 square feet and the height of 23/4 feet into the volume formula:

[tex]\rm Volume = 42 \times \dfrac{23}{4}\\\\\\Volume=\dfrac{42\times23}{4}\\\\\\Volume=\dfrac{966}{4}\\\\\\Volume=241.5\\\\\\Volume=241\frac12\; cubic\;feet[/tex]

So, the volume of the shipping container is:

[tex]\Large\boxed{\boxed{\rm 241\frac{1}{2}\;cubic\;feet}}[/tex]

ACCESS MORE
EDU ACCESS
Universidad de Mexico