Please help my assignment

Answer:
1)
Final velocity: 25.48 m/s
He fall 33.124 m far.
2)
depth: 57 m
Explanation:
To solve these problems, we can use the equations of motion under constant acceleration due to gravity.
1. For Upton Chuck's free fall:
Given:
We can use the equation of motion:
[tex] \Large\boxed{\boxed{v = u + gt }}[/tex]
Where:
Substituting the values, we get:
[tex] v = 0 + (9.8 \, \textsf{m/s}^2) \times (2.60 \, \textsf{s}) [/tex]
[tex] v = 25.48 \, \textsf{m/s} [/tex]
So, Upton Chuck's final velocity is [tex]\bold{\sf 25.48 \, \textsf{m/s} }[/tex].
To find the distance fallen, we can use the equation:
[tex]\Large\boxed{\boxed{ s = ut + \dfrac{1}{2}gt^2}} [/tex]
Where:
Since [tex]\bold{\sf u = 0 }[/tex], the equation simplifies to:
[tex] s = \dfrac{1}{2}gt^2 [/tex]
[tex] s = \dfrac{1}{2} \times (9.8 \, \textsf{m/s}^2) \times (2.60 \, \textsf{s})^2 [/tex]
[tex] s = 33.124 \, \textsf{m} [/tex]
So, Upton Chuck falls approximately [tex]\bold{\sf 33.125 \, \textsf{m} }[/tex].
[tex]\dotfill[/tex]
2. For the stone dropped into the well:
Given:
We can use the equation for distance fallen:
[tex]\Large\boxed{\boxed{s = ut + \dfrac{1}{2}gt^2 }}[/tex]
Substituting the values, we get:
[tex] s = \dfrac{1}{2} \times (9.8 \, \textsf{m/s}^2) \times (3.41 \, \textsf{s})^2 [/tex]
[tex] s = \dfrac{1}{2} \times 9.8 \times 11.6281 \, \textsf{m} [/tex]
[tex] s = 56.97769 [/tex]
[tex] s = 57 \, \textsf{m ( in nearest whole number)} [/tex]
Therefore, the depth of the well is approximately [tex]\bold{\sf 57 \, \textsf{m} }[/tex].