Respuesta :

msm555

Answer:

1)

Final velocity: 25.48 m/s

He fall 33.124 m far.

2)

depth: 57 m

Explanation:

To solve these problems, we can use the equations of motion under constant acceleration due to gravity.

1. For Upton Chuck's free fall:

Given:

  • Time, t = 2.60 seconds
  • Initial velocity, u = 0 (as he is initially at rest)
  • Acceleration due to gravity, g = 9.8 m/s² (assuming near Earth's surface)

We can use the equation of motion:

[tex] \Large\boxed{\boxed{v = u + gt }}[/tex]

Where:

  • [tex]\bold{\sf v }[/tex] is the final velocity,
  • [tex]\bold{\sf u }[/tex] is the initial velocity (which is 0 in this case),
  • [tex]\bold{\sf g }[/tex] is the acceleration due to gravity, and
  • [tex]\bold{\sf t }[/tex] is the time.

Substituting the values, we get:

[tex] v = 0 + (9.8 \, \textsf{m/s}^2) \times (2.60 \, \textsf{s}) [/tex]

[tex] v = 25.48 \, \textsf{m/s} [/tex]

So, Upton Chuck's final velocity is [tex]\bold{\sf 25.48 \, \textsf{m/s} }[/tex].

To find the distance fallen, we can use the equation:

[tex]\Large\boxed{\boxed{ s = ut + \dfrac{1}{2}gt^2}} [/tex]

Where:

  • [tex]\bold{\sf s }[/tex] is the distance fallen,
  • [tex]\bold{\sf u }[/tex] is the initial velocity,
  • [tex]\bold{\sf g }[/tex] is the acceleration due to gravity, and
  • [tex]\bold{\sf t }[/tex] is the time.

Since [tex]\bold{\sf u = 0 }[/tex], the equation simplifies to:

[tex] s = \dfrac{1}{2}gt^2 [/tex]

[tex] s = \dfrac{1}{2} \times (9.8 \, \textsf{m/s}^2) \times (2.60 \, \textsf{s})^2 [/tex]

[tex] s = 33.124 \, \textsf{m} [/tex]

So, Upton Chuck falls approximately [tex]\bold{\sf 33.125 \, \textsf{m} }[/tex].

[tex]\dotfill[/tex]

2. For the stone dropped into the well:

Given:

  • Time taken to hit the water, [tex]\bold{\sf t = 3.41 }[/tex] s
  • Assuming no initial velocity ([tex]\bold{\sf u = 0 }[/tex])
  • Acceleration due to gravity, [tex]\bold{\sf g = 9.8 \, \textsf{m/s}^2 }[/tex]

We can use the equation for distance fallen:

[tex]\Large\boxed{\boxed{s = ut + \dfrac{1}{2}gt^2 }}[/tex]

Substituting the values, we get:

[tex] s = \dfrac{1}{2} \times (9.8 \, \textsf{m/s}^2) \times (3.41 \, \textsf{s})^2 [/tex]

[tex] s = \dfrac{1}{2} \times 9.8 \times 11.6281 \, \textsf{m} [/tex]

[tex] s = 56.97769 [/tex]

[tex] s = 57 \, \textsf{m ( in nearest whole number)} [/tex]

Therefore, the depth of the well is approximately [tex]\bold{\sf 57 \, \textsf{m} }[/tex].

ACCESS MORE