Respuesta :
Answer:
[tex]x=4-\frac{5\sqrt3}{2}\\[/tex]
Step-by-step explanation:
[tex]2x+5\sqrt3+7 =15\\[/tex]
[tex]2x=15-7-5\sqrt3[/tex]
[tex]2x=8-5\sqrt3\\[/tex]
[tex]\bf\red{\boxed{ x=4-\frac{5\sqrt3}{2} }}\\[/tex]
Success! ❀
Answer:
[tex]\Huge \boxed{\boxed{\bf{x = 4 - \frac{5\sqrt{3}}{2}}}}[/tex]
Step-by-step explanation:
To solve the equation [tex]\tt{2x + 5\sqrt{3} + 7 = 15}[/tex] for [tex]\tt{x}[/tex], we need to isolate [tex]\tt{x}[/tex] on one side of the equation.
1. Subtract [tex]\tt{7}[/tex] from both sides of the equation to get rid of the constant term on the left side:
- [tex]\tt{2x + 5\sqrt{3} + 7 - 7 = 15 - 7}[/tex]
- [tex]\tt{2x + 5\sqrt{3} = 8}[/tex]
2. Subtract [tex]\tt{5\sqrt{3}}[/tex] from both sides to isolate the term with [tex]\tt{x}[/tex]:
- [tex]\tt{2x + 5\sqrt{3} - 5\sqrt{3} = 8 - 5\sqrt{3}}[/tex]
- [tex]\tt{2x = 8 - 5\sqrt{3}}[/tex]
3. Divide both sides by [tex]\tt{2}[/tex] to solve for [tex]\tt{x}[/tex]:
- [tex]\tt{\dfrac{2x}{2} = \dfrac{8 - 5\sqrt{3}}{2}}[/tex]
- [tex]\tt{x = 4 - \dfrac{5\sqrt{3}}{2}}[/tex]
The solution for [tex]\tt{x}[/tex] is [tex]\tt{x = 4 - \frac{5\sqrt{3}}{2}}[/tex].
________________________________________________________