Respuesta :

Answer:

  • x = 3
  • y = 3√2

Step-by-step explanation:

We can find the value of x and y of the triangles using the ratio of 45°-45°-90° triangle and 30°-60°-90° triangle.

Characteristics of a 45°-45°-90° Triangle:

  • It is an isosceles right triangle, which means both perpendicular legs are same length.
  • Using the Pythagorean Formula:

       (let the length of the leg = a)

       [tex]hypotenuse=\sqrt{a^2+a^2}[/tex]

                          [tex]=\sqrt{2a^2}[/tex]

                          [tex]=a\sqrt{2}[/tex]

      [tex]\boxed{\bf leg:hypotenuse=1:\sqrt{2} }[/tex]

Characteristics of a 30°-60°-90° Triangle:

  • It is half of an equilateral triangle, which means the hypotenuse is twice the length of the short perpendicular legs.
  • Using the Pythagorean Formula:

       (let the length of the short leg = a, then the hypotenuse = 2a)

       [tex]hypotenuse=\sqrt{short\ leg^2+long\ leg^2}[/tex]

                     [tex]2a=\sqrt{a^2+long\ leg^2}[/tex]

                 [tex](2a)^2=a^2+long\ leg^2[/tex]  

            [tex]long\ leg =\sqrt{4a^2-a^2}[/tex]

            [tex]long\ leg =\sqrt{3a^2}[/tex]

            [tex]long\ leg =a\sqrt{3}[/tex]

           [tex]\boxed{\bf short\ leg:long\ leg:hypotenuse=1:\sqrt{3} :2 }[/tex]

For the 30°-60°-90° Triangle, given hypotenuse = 6

[tex]short\ leg:hypotenuse=1:2[/tex]

                           [tex]x:6=1:2[/tex]

                              [tex]2x=6[/tex]

                                [tex]\bf x=3[/tex]

For the 45°-45°-90° Triangle, given hypotenuse = 6

[tex]leg:hypotenuse=1:\sqrt{2}[/tex]

                  [tex]y : 6 = 1:\sqrt{2}[/tex]

                  [tex]\sqrt{2} y=6[/tex]

                       [tex]\displaystyle y=\frac{6}{\sqrt{2} }[/tex]

                       [tex]\bf y=3\sqrt{2}[/tex]

ACCESS MORE
EDU ACCESS