Respuesta :
[tex](\frac{f}{g})(x)=\frac{f(x)}{g(x)}[/tex]
so
[tex](\frac{f}{g})(8)=\frac{f(8)}{g(8)}[/tex]
find f(8) and g(8)
f(8)=3-2(8)=3-16=-13
[tex]g(8)=\frac{1}{8+5}=\frac{1}{13}[/tex]
so
[tex]\frac{f(8)}{g(8)}=\frac{-13}{\frac{1}{13}}=(-13)(13)=-169[/tex]
[tex](\frac{f}{g})(8)=-169[/tex]
so
[tex](\frac{f}{g})(8)=\frac{f(8)}{g(8)}[/tex]
find f(8) and g(8)
f(8)=3-2(8)=3-16=-13
[tex]g(8)=\frac{1}{8+5}=\frac{1}{13}[/tex]
so
[tex]\frac{f(8)}{g(8)}=\frac{-13}{\frac{1}{13}}=(-13)(13)=-169[/tex]
[tex](\frac{f}{g})(8)=-169[/tex]
[tex]\bf \begin{cases}
f(x)=3-2x\\
g(x)=\frac{1}{x+5}
\end{cases}\qquad \left( \cfrac{f}{g} \right)(8)\implies \cfrac{f(8)}{g(8)}\implies \cfrac{3-2(8)}{\frac{1}{(8)+5}}
\\\\\\
\cfrac{3-16}{\frac{1}{13}}\implies \cfrac{-13}{\frac{1}{13}}\implies \cfrac{\frac{-13}{1}}{\frac{1}{13}}\implies \cfrac{-13}{1}\cdot \cfrac{13}{1}\implies -169[/tex]
