Respuesta :


First, distribute your like terms, which in this case is 'x'

you should get (9x+6)/18= 60x + 12

then you have to multiply both sides by 18 to get rid of the fraction

you should then get 9x+6= 1080x + 206

next, subtract 9x from 1080x, you should get 1071x

then subtract 206 on the side the 6 is on and you should get -200=1080x

divide both sides by 1080 and you should get x=0.19


For future preferences use PEMDAS = Parentheses, exponents, multiplication, division, addition, and subtraction. (Yeah, I know I didn't do it in that order)

[tex]\frac{9x+6}{18}=\frac{20x+4}{3x}[/tex]

Cross multiply. Distribute...
[tex]3x(9x+6)=18(20x+4)\\27x^2+18x=360x+72\\27x^2-342x-72=0\\3x^2-38x-8=0[/tex]

OH GOD IT'S A QUADRATIC
(our equation is in ax² + bx + c = 0 form. a=3. b= -38. c= -8.
plug these values into the quadratic formula and simplify.)
[tex]x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}=\frac{-(-38)\pm\sqrt{(-38)^2-4(3)(-8)}}{2(3)}=\frac{38\pm\sqrt{1444+96}}6\\\\\sqrt{1444+96}=\sqrt{1540}=\sqrt{4\times345}=2\sqrt{345}\\\\\frac{38\pm2\sqrt{345}}6=\boxed{x=\frac{19\pm\sqrt{345}}3}[/tex]

Approximate values for x: -0.20714 or 12.874