Respuesta :

x represent an acute angle. So x < 90. So it means it is in first quadrant. So value of cos (x) and tan (x) are positive.

Sin(x) = [tex] \frac{7}{10} [/tex]

We can find cos(x) as by identity which is given as below:

[tex]cos(x) = \sqrt{1 - (sin(x))^2} [/tex]
                  = [tex] \sqrt{1 - ( \frac{7}{10})^2 } [/tex]
                  = [tex] \sqrt{ \frac{100 - 49}{100} } = \sqrt{ \frac{51}{100} } [/tex]
                  = [tex]= \frac{ \sqrt{51} }{10} [/tex]
So cos(x) = [tex] \frac{ \sqrt{51} }{10} [/tex]
 
 As we know 
[tex]tan(x) = \frac{sin(x)}{cos(x)} [/tex]
                 = [tex] \frac{ \frac{7}{10} }{ \frac{ \sqrt{51} }{10} } [/tex]
                 [tex]= \frac{7}{ \sqrt{51} } [/tex]

So tan(x) = [tex] \frac{7}{ \sqrt{51} } [/tex]          
RELAXING NOICE
Relax