By Stoke's theorem, the line integral of [tex]\mathbf f(x,y,z)=y^2\,\mathbf i+z^2\,\mathbf j+z\,\mathbf k[/tex] along [tex]C[/tex] (presumably the *boundary* of the triangle, and not the triangle itself)
[tex]\displaystyle\int_C\mathbf f\cdot\mathrm d\mathbf r[/tex]
is given by the surface integral of [tex]\nabla\times\mathbf f(x,y,z)[/tex] along the surface with boundary [tex]C[/tex],
[tex]\displaystyle\iint_S(\nabla\times\mathbf f)\cdot\mathrm d\mathbf S[/tex]
First, compute the curl of [tex]\mathbf f[/tex]:
[tex]\nabla\times\mathbf f=-2z\,\mathbf i-\,\mathbf j-2y\,\mathbf k[/tex]
Not sure what kind of parameterization you're given for [tex]S[/tex], but you can use
[tex]\mathbf s(u,v)=(1-u)\,\mathbf k+u(1-v\,\mathbf i+v\,\mathbf j)=(u-uv)\,\mathbf i+uv\,\mathbf j+(1-u)\,\mathbf k[/tex]
where [tex](u,v)\in[0,1]\times[0,1][/tex]. Then
[tex]\mathbf s_u\times\mathbf s_v=u(\mathbf i+\mathbf j+\mathbf k)[/tex]
So the surface integral is equivalent to
[tex]\displaystyle\iint_S(\nabla\times\mathbf f)\cdot\mathrm d\mathbf S=\int_{u=0}^{u=1}\int_{v=0}^{v=1}(-2z(u,v)\,\mathbf i-\,\mathbf j-2y(u,v)\,\mathbf k)\cdot u(\mathbf i+\mathbf j+\mathbf k)\,\mathrm dv\,\mathrm du[/tex]
[tex]\displaystyle=\int_{u=0}^{u=1}\int_{v=0}^{v=1}(-2(1-u)\,\mathbf i-\,\mathbf j-2uv\,\mathbf k)\cdot u(\mathbf i+\mathbf j+\mathbf k)\,\mathrm dv\,\mathrm du[/tex]
[tex]\displaystyle=\int_{u=0}^{u=1}\int_{v=0}^{v=1}(2u^2(1-v)-3u)\,\mathrm dv\,\mathrm du[/tex]
[tex]=-\dfrac76[/tex]