Answer:
62 in.
Step-by-step explanation:
To find the perimeter of the floor in the scale drawing, we need to first determine the scale factor between the actual dimensions and the dimensions in the scale drawing.
Given:
Actual length = 26 ft = 26 ft × 12 in/ft = 312 in
Actual width = 36 ft = 36 ft × 12 in/ft = 432 in
Scale length = 13 in
We can find the scale factor by comparing the actual length to the length in the scale drawing:
[tex] \begin{aligned} \textsf{Scale factor} & = \dfrac{\textsf{Length in scale drawing}}{\textsf{Actual length}} \\\\ & = \dfrac{13 \textsf{ in }}{ 312 \textsf{ in}} \\\\ & = \dfrac{1}{24} \end{aligned} [/tex]
Now we can use this scale factor to find the width in the scale drawing:
[tex] \begin{aligned} \textsf{Scale width} & = \textsf{Scale factor} \times \textsf{Actual width} \\\\ & = \dfrac{1}{24 }\times 432 \textsf{ in } \\\\ & = 18 \textsf{ in} \end{aligned} [/tex]
The perimeter in the scale drawing is:
[tex] \begin{aligned} \textsf{Perimeter} & = 2 \times (\textsf{Scale length} + \textsf{Scale width}) \\\\ & = 2 \times (13 \textsf{ in} + 18 \textsf{ in}) \\\\ & = 2 \times 31 \textsf{ in } \\\\ & = 62 \textsf{ in} \end{aligned} [/tex]
So, the perimeter of the floor in the scale drawing is 62 in.