Answer:
[tex]a_n = \dfrac{1}{28}(-2)^{n-1}[/tex]
[tex]a_7 = \dfrac{16}{7}[/tex]
Step-by-step explanation:
We are given a geometric series, where each term has a common ratio between it and the previous consecutive term:
[tex]\dfrac{1}{28},\ \dfrac{-1}{14},\ \dfrac{1}{7},\ ...[/tex]
We can solve for the common ratio by dividing any term by the previous consecutive term:
[tex]r = \dfrac{-1}{14} \div\dfrac{1}{28}[/tex]
[tex]r = \dfrac{-1}{14} \times\dfrac{28}{1}[/tex]
[tex]r = \dfrac{-28}{14}[/tex]
[tex]r=-2[/tex]
We can identify the first term as:
[tex]\dfrac{1}{28}[/tex]
So, the explicit formula for the geometric sequence is:
[tex]a_n = a_1 \cdot r^{n-1}[/tex]
[tex]\boxed{a_n = \dfrac{1}{28}(-2)^{n-1}}[/tex]
Using this to solve for the 7th term, [tex]a_7[/tex]:
[tex]a_7 = \dfrac{1}{28}(-2)^{7-1}[/tex]
[tex]a_7 = \dfrac{1}{28}(-2)^{6}[/tex]
[tex]a_7 = \dfrac{1}{28}(64)[/tex]
[tex]a_7 = \dfrac{64}{28}[/tex]
[tex]\boxed{a_7 = \dfrac{16}{7}}[/tex]