Respuesta :
Answer:
The derivative with respect to [tex]x[/tex] is:
[tex]\displaystyle \frac{-2\, x - 6}{3\, x^{2/3}\, (x - 6)^{2}}[/tex];
Or equivalently:
[tex]\displaystyle \frac{-2\, x - 6}{3\, \sqrt[3]{x^{2}}\, (x - 6)^{2}}[/tex].
Step-by-step explanation:
Assume that the question is asking for the derivative of [tex](\sqrt[3]{x}) / (x - 6)[/tex] with respect to [tex]x[/tex]. Apply the following steps:
- Rewrite the cubic root [tex]\sqrt[3]{x}[/tex] as [tex]x[/tex] raised to the fractional power [tex](1/3)[/tex], so as to fit the form of the power rule.
- Apply the quotient rule to find the derivative. Alternatively, rewrite the denominator [tex]1 / (x - 6)[/tex] as [tex](x - 6)^{-1}[/tex] and apply the product rule instead.
By the power rule, for all real number [tex]r[/tex], including fractions such as [tex](1/3)[/tex]:
[tex]\displaystyle \frac{d}{d x} \left[x^{r}\right] = r\, x^{r - 1}[/tex].
Hence:
[tex]\displaystyle \frac{d}{d x} \left[\sqrt[3]{x}\right] = \frac{d}{d x} \left[x^{1/3}\right] = \frac{1}{3}\, x^{-2/3}[/tex].
Since [tex]x^{-r} = (1 / x^{r})[/tex] for all non-zero [tex]x[/tex]:
[tex]\displaystyle \frac{1}{3}\, x^{-2/3} = \frac{1}{3\, x^{2/3}}[/tex].
The derivative of the original expression would be:
[tex]\begin{aligned} & \frac{d}{d x} \left[\frac{\sqrt[3]{x}}{x - 6}\right] \\ =\; & \frac{d}{d x}\left[\left(x^{1/3}\right)\, (x - 6)^{-1}\right] \\ =\; & \frac{d}{d x}\, \left[\left(x^{1/3}\right)\right]\, (x - 6)^{-1} + \left(x^{1/3}\right)\, \frac{d}{d x}\, \left[(x - 6)^{-1}\right] \\ =\; & \left(\frac{1}{3\, x^{2/3}}\right)\, (x - 6)^{-1} + \left(x^{1/3}\right)\, (-1)\, (x - 6)^{-2} \end{aligned}[/tex].
Make use of the fact that [tex]x^{-r} = (1 / x^{r})[/tex] for all non-zero [tex]x[/tex] to further simplify the expression:
[tex]\begin{aligned} & \left(\frac{1}{3\, x^{2/3}}\right)\, (x - 6)^{-1} + \left(x^{1/3}\right)\, (-1)\, (x - 6)^{-2} \\ =\; &\frac{1}{\left(3\, x^{2/3}\right)\, (x - 6)} + \frac{(-1)\, x^{1/3}}{\, (x - 6)^{2}} \\ =\; & \frac{(x - 6) + ((-1)\, (x^{1/3}))\, (3\, x^{2/3})}{3\, x^{2/3}\, (x - 6)^{2}} \\ =\; & \frac{x - 6 - 3\, x}{3\, x^{2/3}\, (x - 6)^{2}} \\ =\; & \frac{-2\, x - 6}{3\, x^{2/3}\, (x - 6)^{2}} \\ =\; & \frac{-2\, x - 6}{3\, \sqrt[3]{x^{2}}\, (x - 6)^{2}}\end{aligned}[/tex].