Answer:
x = 8 or -4
Step-by-step explanation:
For Simple Absolute Equation:
[tex]\boxed{|x|=\pm x=x\ or\ -x}[/tex]
First we group the absolute on 1 side and all constants on the other side:
[tex]|4-2x|+6=18[/tex]
[tex]|4-2x|=18-6[/tex]
[tex]|4-2x|=12[/tex]
Since [tex]|x|=\pm x[/tex], then [tex]|4-2x|=\pm(4-2x)[/tex]
[tex]\pm(4-2x)=12[/tex]
(i) for |4 - 2x| = 4 - 2x:
[tex]4-2x=12[/tex]
[tex]4-12=2x[/tex]
[tex]x=-8\div2[/tex]
[tex]x=-4[/tex]
(ii) for |4 - 2x| = -(4 - 2x):
[tex]-(4-2x)=12[/tex]
[tex]-4+2x=12[/tex]
[tex]2x=12+4[/tex]
[tex]x=16\div2[/tex]
[tex]x=8[/tex]
Therefore, [tex]\bf x=8\ or\ -4[/tex]
*Note: this method is only applicable for 1 absolute value (single absolute value). For equation that has more than 1 absolute value, we have to use multiple absolute value method.