Solve the absolute value equation for x.

|4 - 2x| + 6 = 18

Enter your answers in the blanks in order from least to greatest.

x = first answer or second answer.
(they are both numbers)

Solve the absolute value equation for x 4 2x 6 18 Enter your answers in the blanks in order from least to greatest x first answer or second answer they are both class=

Respuesta :

Answer:

x = 8 or -4

Step-by-step explanation:

For Simple Absolute Equation:

[tex]\boxed{|x|=\pm x=x\ or\ -x}[/tex]

First we group the absolute on 1 side and all constants on the other side:

[tex]|4-2x|+6=18[/tex]

[tex]|4-2x|=18-6[/tex]

[tex]|4-2x|=12[/tex]

Since [tex]|x|=\pm x[/tex], then [tex]|4-2x|=\pm(4-2x)[/tex]

[tex]\pm(4-2x)=12[/tex]

(i) for |4 - 2x| = 4 - 2x:

   [tex]4-2x=12[/tex]

   [tex]4-12=2x[/tex]

   [tex]x=-8\div2[/tex]

   [tex]x=-4[/tex]

(ii) for |4 - 2x| = -(4 - 2x):

    [tex]-(4-2x)=12[/tex]

    [tex]-4+2x=12[/tex]

    [tex]2x=12+4[/tex]

    [tex]x=16\div2[/tex]

    [tex]x=8[/tex]

Therefore, [tex]\bf x=8\ or\ -4[/tex]

*Note: this method is only applicable for 1 absolute value (single absolute value). For equation that has more than 1 absolute value, we have to use multiple absolute value method.