Respuesta :

Step-by-step explanation:

To find the value of \( \sqrt{\frac{\sqrt{2}-1}{\sqrt{2}+1}} \), let's first simplify the expression:

\( \sqrt{\frac{\sqrt{2}-1}{\sqrt{2}+1}} \)

We can rationalize the denominator by multiplying both the numerator and denominator by the conjugate of the denominator:

\( \sqrt{\frac{(\sqrt{2}-1)(\sqrt{2}-1)}{(\sqrt{2}+1)(\sqrt{2}-1)}} \)

This simplifies to:

\( \sqrt{\frac{2 - 2\sqrt{2} + 1}{2 - 1}} \)

\( \sqrt{\frac{3 - 2\sqrt{2}}{1}} \)

Now, we can further simplify this by splitting the square root:

\( \sqrt{3 - 2\sqrt{2}} \)

This can be expressed as:

\( \sqrt{(\sqrt{2})^2 - 2(\sqrt{2}) + 1^2} \)

\( \sqrt{(\sqrt{2} - 1)^2} \)

\( \sqrt{2} - 1 \)

So, the value of \( \sqrt{\frac{\sqrt{2}-1}{\sqrt{2}+1}} \) is \( \sqrt{2} - 1 \).