Respuesta :
---
To solve the quadratic expression \(4x^4 - 18x^3 - 10x^2\) using the box method, first, factor out the greatest common factor (GCF), which is 2:
\[2(2x^4 - 9x^3 - 5x^2)\]
Now, set up a box with two rows and three columns to distribute the terms:
\[
\begin{array}{|c|c|c|}
\hline
2x^4 & -9x^3 & -5x^2 \\
\hline
& & \\
\hline
& & \\
\hline
\end{array}
\]
Next, fill in the boxes by distributing the terms \(2x^4\), \(-9x^3\), and \(-5x^2\):
\[
\begin{array}{|c|c|c|}
\hline
2x^4 & -9x^3 & -5x^2 \\
\hline
2x^3 & -9x^2 & -5x \\
\hline
\end{array}
\]
Now, factor out the common terms from each row and each column:
From the first row: \(2x^3\)
From the second row: \(-x^2\)
From the first column: \(x^2\)
From the second column: \(x\)
So, the factored expression is:
\[2x^2(x^2 - 9x - 5)\]
To solve the quadratic expression \(x^2 - 9x - 5\), use the quadratic formula:
\[x = \frac{{-b \pm \sqrt{{b^2 - 4ac}}}}{{2a}}\]
For \(x^2 - 9x - 5\), \(a = 1\), \(b = -9\), and \(c = -5\).
\[x = \frac{{9 \pm \sqrt{{101}}}}{{2}}\]
So, the factored expression is:
\[2x^2(x - \frac{{9 + \sqrt{{101}}}}{{2}})(x - \frac{{9 - \sqrt{{101}}}}{{2}})\]
Thus, in the box method:
- \(a = 2x^2\)
- \(b = \frac{{9 + \sqrt{{101}}}}{{2}}\)
- \(c = \frac{{9 - \sqrt{{101}}}}{{2}}\)
---
Answer:
[tex]\huge\boxed{2x^2(2x+1)(x-5)}[/tex]
Step-by-step explanation:
We are factoring the given expression:
[tex]4x^4 - 18x^3 - 10x^2[/tex]
First, we can undistribute (factor out) the GCF between all the terms, which is 2x²:
[tex]2x^2(2x^2 - 9x - 5)[/tex]
Next, we can factor the resulting quadratic by grouping:
1) Multiply the [tex]x^2[/tex] term's coefficient by the constant term.
[tex]2\cdot (-5) = -10[/tex]
2) List the product's factor pairs.
(1, -10) ← 3) Select the pair whose factors add to the [tex]x[/tex] term's coefficient.
(2, -5)
(10, -1)
3) Split the [tex]x[/tex] term using these factors.
[tex]2x^2 +1x - 10x - 5[/tex]
4) Group terms using the distributive property.
[tex]x(2x +1) - 5(2x + 1)[/tex]
5) Rewrite again using the distributive property.
[tex](2x+1)(x-5)[/tex]
Finally, we can put that factored quadratic back into the original expression:
[tex]\huge\boxed{2x^2(2x+1)(x-5)}[/tex]