Respuesta :
Answer:
a(i) [tex]\overrightarrow{AM}=\frac{1}{2}y-x[/tex]
(ii) [tex]\overrightarrow{OD}=y-2x[/tex]
(b)
- [tex]\overrightarrow{OD}\ is\ parallel\ to\ \overrightarrow{AM}[/tex]
- [tex]The\ magnitude\ of\ \overrightarrow{OD}\ is\ twice\ the\ magnitude\ of\ \overrightarrow{AM}[/tex]
Step-by-step explanation:
Finding the Vector of 2 Points with Given Vectors:
We can add the given vectors to find the vector of 2 points, providing the added vectors form a continuous line from the same Start Point & End Point with the asked vector.
(i)
[tex]\overrightarrow{AM}=\overrightarrow{AN}+\overrightarrow{NM}[/tex]
- [tex]\overrightarrow{AN}\ has\ \frac{1}{2}\ length\ and\ same\ direction\ with\ \overrightarrow{AB} \Longrightarrow\overrightarrow{AN}=\frac{1}{2} \overrightarrow{AB}=\frac{1}{2} y[/tex]
- [tex]\overrightarrow{NM}\ has\ same\ length\ but\ opposite\ direction\ with\ \overrightarrow{OA}\Longrightarrow\overrightarrow{NM}=-\overrightarrow{OA}=-x[/tex]
[tex]\overrightarrow{AM}=\frac{1}{2}y-x[/tex]
(ii)
[tex]\overrightarrow{OD}=\overrightarrow{OC}+\overrightarrow{CD}[/tex]
- [tex]\overrightarrow{OC}\ has\ same\ length\ and\ same\ direction\ with\ \overrightarrow{AB} \Longrightarrow\overrightarrow{OC}= \overrightarrow{AB}= y[/tex]
- [tex]\overrightarrow{CD}\ has\ 2\times length\ but\ opposite\ direction\ with\ \overrightarrow{OA}\Longrightarrow\overrightarrow{CD}=-2\times\overrightarrow{OA}=-2x[/tex]
[tex]\overrightarrow{OD}=y-2x[/tex]
(b)
[tex]\overrightarrow{OD}=y-2x[/tex]
[tex]=2(\frac{1}{2} y-x)[/tex]
[tex]=2\times\overrightarrow{AM}[/tex]
Therefore:
- [tex]\overrightarrow{OD}\ is\ parallel\ to\ \overrightarrow{AM}[/tex]
- [tex]The\ magnitude\ of\ \overrightarrow{OD}\ is\ twice\ the\ magnitude\ of\ \overrightarrow{AM}[/tex]