Answer:
a)[tex] \log_5(2) + \log_5(3) = \log_5(6) [/tex]
b) [tex] \log(12) - \log(3) = \log(4) [/tex]
c) [tex] \ln(4) + 2\ln(3) = \ln(36) [/tex]
d) [tex]\sf \log(M) + 2\log(N) = \log(MN^2) [/tex]
e)[tex] \sf \log_b(M) + \log_b(N) + \log_b(P) = \log_b(M \cdot N \cdot P) [/tex]
Step-by-step explanation:
The rules of logarithms are:
Product Rule: [tex] \log_b(a) + \log_b(c) = \log_b(ac) [/tex]
Quotient Rule: [tex] \log_b(a) - \log_b(c) = \log_b\left(dfrac{a}{c}\right) [/tex]
Power Rule: [tex] n \cdot \log_b(a) = \log_b(a^n) [/tex]
Now, let's apply these rules to each problem:
a. [tex]\log_5(2) + \log_5(3)[/tex]
Using the product rule, we have:
[tex] \log_5(2) + \log_5(3) = \log_5(2 \cdot 3) \\= \log_5(6) [/tex]
[tex]\dotfill[/tex]
b. [tex] \log(12) - \log(3) [/tex]
Using the quotient rule, we have:
[tex] \log(12) - \log(3) = \log\left(\dfrac{12}{3}\right)\\ = \log(4) [/tex]
[tex]\dotfill[/tex]
c. [tex] \ln(4) + 2\ln(3) [/tex]
Using the power rule, we have:
[tex] \ln(4) + 2\ln(3) = \ln(4) + \ln(3^2) \\= \ln(4 \cdot 3^2) = \ln(36) [/tex]
[tex]\dotfill[/tex]
d. [tex] \sf \log(M) + 2\log(N) [/tex]
Using the power rule, we have:
[tex]\sf \log(M) + 2\log(N) = \log(M) + \log(N^2)\\\sf = \log(MN^2) [/tex]
[tex]\dotfill[/tex]
e. [tex] \sf \log_b(M) + \log_b(N) + \log_b(P) [/tex]
Using the product rule multiple times, we have:
[tex] \sf \log_b(M) + \log_b(N) + \log_b(P) = \log_b(M\cdot N) + \log_b(P)\\\sf = \log_b(M \cdot N \cdot P) [/tex]