Answer:
[tex] A_{\textsf{triangle}} = 24 \, \textsf{in}^2 [/tex]
[tex] A_{\textsf{rectangle}} = 72 \, \textsf{in}^2 [/tex]
[tex] \textsf{Total Area} = 96 \, \textsf{in}^2 [/tex]
Step-by-step explanation:
To find the area of the composite figure, we first need to find the area of each individual component and then sum them up.
Area of the Triangle:
Given:
- Base of the triangle [tex]= 12 \, \textsf{in}[/tex]
- Height of the triangle [tex]= 4 \, \textsf{in}[/tex]
The area [tex]A[/tex] of a triangle is given by the formula:
[tex] A_{\textsf{triangle}} = \dfrac{1}{2} \times \textsf{Base} \times \textsf{Height} [/tex]
[tex] A_{\textsf{triangle}} = \dfrac{1}{2} \times 12 \times 4 [/tex]
[tex] A_{\textsf{triangle}} = 24 \, \textsf{in}^2 [/tex]
Area of the Rectangle:
Given:
- Length of the rectangle [tex]= 12 \, \textsf{in}[/tex]
- Width of the rectangle [tex]= 6 \, \textsf{in}[/tex]
The area [tex]A[/tex] of a rectangle is given by the formula:
[tex] A_{\textsf{rectangle}} = \textsf{Length} \times \textsf{Width} [/tex]
[tex] A_{\textsf{rectangle}} = 12 \times 6 [/tex]
[tex] A_{\textsf{rectangle}} = 72 \, \textsf{in}^2 [/tex]
Now, to find the total area of the composite figure, we add the areas of the triangle and the rectangle:
[tex] \textsf{Total Area} = A_{\textsf{triangle}} + A_{\textsf{rectangle}} [/tex]
[tex] \textsf{Total Area} = 24 + 72 [/tex]
[tex] \textsf{Total Area} = 96 \, \textsf{in}^2 [/tex]
So, the total area of the composite figure is [tex]96 \, \textsf{in}^2[/tex].