Find the area of the composite figure.
First, find the area of the triangle.
Triangle
bh
Area = [?] in.² 2
Rectangle
Area = [] in.²
4 in.
6 in.
Total Area of
Composite Figure = [ ] in.²
12 in.
12 in.

Find the area of the composite figure First find the area of the triangle Triangle bh Area in 2 Rectangle Area in 4 in 6 in Total Area of Composite Figure in 12 class=

Respuesta :

msm555

Answer:

[tex] A_{\textsf{triangle}} = 24 \, \textsf{in}^2 [/tex]

[tex] A_{\textsf{rectangle}} = 72 \, \textsf{in}^2 [/tex]

[tex] \textsf{Total Area} = 96 \, \textsf{in}^2 [/tex]

Step-by-step explanation:

To find the area of the composite figure, we first need to find the area of each individual component and then sum them up.

Area of the Triangle:

Given:

  • Base of the triangle [tex]= 12 \, \textsf{in}[/tex]
  • Height of the triangle [tex]= 4 \, \textsf{in}[/tex]

The area [tex]A[/tex] of a triangle is given by the formula:

[tex] A_{\textsf{triangle}} = \dfrac{1}{2} \times \textsf{Base} \times \textsf{Height} [/tex]

[tex] A_{\textsf{triangle}} = \dfrac{1}{2} \times 12 \times 4 [/tex]

[tex] A_{\textsf{triangle}} = 24 \, \textsf{in}^2 [/tex]

Area of the Rectangle:

Given:

  • Length of the rectangle [tex]= 12 \, \textsf{in}[/tex]
  • Width of the rectangle [tex]= 6 \, \textsf{in}[/tex]

The area [tex]A[/tex] of a rectangle is given by the formula:

[tex] A_{\textsf{rectangle}} = \textsf{Length} \times \textsf{Width} [/tex]

[tex] A_{\textsf{rectangle}} = 12 \times 6 [/tex]

[tex] A_{\textsf{rectangle}} = 72 \, \textsf{in}^2 [/tex]

Now, to find the total area of the composite figure, we add the areas of the triangle and the rectangle:

[tex] \textsf{Total Area} = A_{\textsf{triangle}} + A_{\textsf{rectangle}} [/tex]

[tex] \textsf{Total Area} = 24 + 72 [/tex]

[tex] \textsf{Total Area} = 96 \, \textsf{in}^2 [/tex]

So, the total area of the composite figure is [tex]96 \, \textsf{in}^2[/tex].

ACCESS MORE
EDU ACCESS
Universidad de Mexico