50 points!!!
Given
ZBAC = 2x + 10
ZBDC = 4x-4
Solve For
X=
mLBAC=
mBC=

Answer:
x = 7
[tex]\angle BAC=24^{\circ}[/tex]
[tex]m\angle \stackrel{\frown}{BC}=48^{\circ}[/tex]
Step-by-step explanation:
(Refer to the attachments)
By angles subtended by same arc theorem,
[tex] \angle BAC=\angle BDC[/tex]
[tex]2x + 1 0 = 4x - 4[/tex]
[tex] \implies1 0 + 4= 4x - 2x[/tex]
[tex] \implies1 4= 2x[/tex]
[tex] \implies \boxed{x = 7}[/tex]
Given that [tex]m \angle BAC=2x+10=2*7+10=24^{\circ}[/tex]
By the Angle at the center theorem
Answer:
[tex] \angle BAC = \angle BDC [/tex]
[tex] x = 7 [/tex]
[tex] \sf m \angle BAC = 24^\circ [/tex]
[tex] \sf m \angle BDC = 24^\circ [/tex]
[tex]\sf m\angle \stackrel{\frown}{BC}= 48^\circ[/tex]
Step-by-step explanation:
We know that:
The inscribed angle subtended by the same arc is equal.
Using this, we can say that:
[tex] \sf \angle BAC = \angle BDC [/tex]
Substitute the value:
[tex] 2x + 10 = 4x - 4 [/tex]
Let's solve for [tex] x [/tex]:
[tex] 2x - 4x = -4 - 10 [/tex]
[tex] -2x = -14 [/tex]
[tex] x =\dfrac{-14}{-2}[/tex]
[tex] x = 7 [/tex]
Now that we have found [tex] x = 7 [/tex], we can substitute it back into the equation to find the values of the angles.
[tex] \sf m \angle BDC = 2x + 10 = 2(7) + 10 = 14 + 10 = 24^\circ [/tex]
[tex] \sf m \angle BAC = 4x - 4 = 4(7) - 4 = 28 - 4 = 24^\circ [/tex]
And,
The Inscribed Angle Theorem states that an angle inscribed in a circle is equal to half the measure of the intercepted arc.
So,
[tex]\sf m\angle BAC = \dfrac{1}{2} \cdot m\angle \stackrel{\frown}{BC}[/tex]
[tex]\sf m\angle \stackrel{\frown}{BC}= 2 \cdot m\angle BAC[/tex]
Substitute the value:
[tex]\sf m\angle \stackrel{\frown}{BC}= 2 \cdot 24^\circ[/tex]
[tex]\sf m\angle \stackrel{\frown}{BC}= 48^\circ[/tex]
Therefore, the answers are:
[tex] \angle BAC = \angle BDC [/tex]
[tex] x = 7 [/tex]
[tex] \sf m \angle BAC = 24^\circ [/tex]
[tex] \sf m \angle BDC = 24^\circ [/tex]
[tex]\sf m\angle \stackrel{\frown}{BC}= 48^\circ[/tex]