Respuesta :

Nayefx

Answer:

x = 7

[tex]\angle BAC=24^{\circ}[/tex]

[tex]m\angle \stackrel{\frown}{BC}=48^{\circ}[/tex]

Step-by-step explanation:

(Refer to the attachments)

By angles subtended by same arc theorem,

[tex] \angle BAC=\angle BDC[/tex]

[tex]2x + 1 0 = 4x - 4[/tex]

[tex] \implies1 0 + 4= 4x - 2x[/tex]

[tex] \implies1 4= 2x[/tex]

[tex] \implies \boxed{x = 7}[/tex]

Given that [tex]m \angle BAC=2x+10=2*7+10=24^{\circ}[/tex]

By the Angle at the center theorem

  • [tex]m\angle \stackrel{\frown}{BC}=2*24=48^{\circ}[/tex]
Ver imagen Nayefx
Ver imagen Nayefx
msm555

Answer:

[tex] \angle BAC = \angle BDC [/tex]

[tex] x = 7 [/tex]

[tex] \sf m \angle BAC = 24^\circ [/tex]

[tex] \sf m \angle BDC = 24^\circ [/tex]

[tex]\sf m\angle \stackrel{\frown}{BC}= 48^\circ[/tex]

Step-by-step explanation:

We know that:

The inscribed angle subtended by the same arc is equal.

Using this, we can say that:

[tex] \sf \angle BAC = \angle BDC [/tex]

Substitute the value:

[tex] 2x + 10 = 4x - 4 [/tex]

Let's solve for [tex] x [/tex]:

[tex] 2x - 4x = -4 - 10 [/tex]

[tex] -2x = -14 [/tex]

[tex] x =\dfrac{-14}{-2}[/tex]

[tex] x = 7 [/tex]

Now that we have found [tex] x = 7 [/tex], we can substitute it back into the equation to find the values of the angles.

[tex] \sf m \angle BDC = 2x + 10 = 2(7) + 10 = 14 + 10 = 24^\circ [/tex]

[tex] \sf m \angle BAC = 4x - 4 = 4(7) - 4 = 28 - 4 = 24^\circ [/tex]

And,

The Inscribed Angle Theorem states that an angle inscribed in a circle is equal to half the measure of the intercepted arc.

So,

[tex]\sf m\angle BAC = \dfrac{1}{2} \cdot m\angle \stackrel{\frown}{BC}[/tex]

[tex]\sf m\angle \stackrel{\frown}{BC}= 2 \cdot m\angle BAC[/tex]

Substitute the value:

[tex]\sf m\angle \stackrel{\frown}{BC}= 2 \cdot 24^\circ[/tex]

[tex]\sf m\angle \stackrel{\frown}{BC}= 48^\circ[/tex]

Therefore, the answers are:

[tex] \angle BAC = \angle BDC [/tex]

[tex] x = 7 [/tex]

[tex] \sf m \angle BAC = 24^\circ [/tex]

[tex] \sf m \angle BDC = 24^\circ [/tex]

[tex]\sf m\angle \stackrel{\frown}{BC}= 48^\circ[/tex]

ACCESS MORE
EDU ACCESS