Respuesta :
[tex]\bf s(t)=\sqrt{t^3+1}
\\\\\\
\cfrac{ds}{dt}=\cfrac{1}{2}(t^3+1)^{-\frac{1}{2}}\cdot 3t^2\implies \boxed{\cfrac{ds}{dt}=\cfrac{3t^2}{2\sqrt{t^3+1}}}\leftarrow v(t)
\\\\\\
\cfrac{d^2s}{dt^2}=\cfrac{6t(2\sqrt{t^3+1})-3t^2\left( \frac{3t^2}{\sqrt{t^3+1}} \right)}{(2\sqrt{t^3+1})^2}\implies
\cfrac{d^2s}{dt^2}=\cfrac{ \frac{6t(2\sqrt{t^3+1})-1}{\sqrt{t^3+1}} }{4(t^3+1)}[/tex]
[tex]\bf \cfrac{d^2s}{dt^2}=\cfrac{6t[2(t^3+1)]-1}{4(t^3+1)\sqrt{t^3+1}}\implies \boxed{\cfrac{d^2s}{dt^2}=\cfrac{12t^4+12t-1}{4t^3+4\sqrt{t^3+1}}}\leftarrow a(t)\\\\ -------------------------------\\\\a(2)=\cfrac{215~ft^2}{44~sec}[/tex]
[tex]\bf \cfrac{d^2s}{dt^2}=\cfrac{6t[2(t^3+1)]-1}{4(t^3+1)\sqrt{t^3+1}}\implies \boxed{\cfrac{d^2s}{dt^2}=\cfrac{12t^4+12t-1}{4t^3+4\sqrt{t^3+1}}}\leftarrow a(t)\\\\ -------------------------------\\\\a(2)=\cfrac{215~ft^2}{44~sec}[/tex]
Answer:
Acceleration of the particle is two thirds ft/s².
Step-by-step explanation:
It is given that, the position of the particle at time t is given by :
[tex]s(t)=\sqrt{t^3+1}[/tex]
Where
s is in feet
t is in seconds
We need to find the acceleration of the particle at 2 seconds. Firstly calculating the velocity of the particle as :
[tex]v=\dfrac{ds(t)}{dt}[/tex]
[tex]v=\dfrac{d(\sqrt{t^3+1})}{dt}[/tex]
This gives, [tex]v=\dfrac{3t^2}{2\sqrt{t^3+1}}[/tex]
Since, [tex]a=\dfrac{dv}{dt}[/tex]
[tex]a=\dfrac{d(\dfrac{3t^2}{2\sqrt{t^3+1}})}{dt}[/tex]
[tex]a=\dfrac{3t^4+12t}{4(t^3+1)^{3/2}}[/tex]
At t = 2 seconds,
[tex]a=\dfrac{3(2)^4+12(2)}{4((2)^3+1)^{3/2}}[/tex]
[tex]a=0.66\ ft/s^2[/tex]
or
[tex]a=\dfrac{2}{3}\ ft/s^2[/tex]
So, the acceleration of the particle at 2 seconds is 2/3 ft/s². Hence, this is the required solution.