Answer:
[tex]x=-3, x=4[/tex]
Step-by-step explanation:
we have
[tex]\frac{x^{2}+2x+3}{x^{2}-x-12}[/tex]
we know that
The denominator can not be zero
Find the roots of the quadratic equation of denominator
[tex]x^{2}-x-12=0[/tex]
using a graphing tool to resolve the quadratic equation
see the attached figure
The solutions are
[tex]x=-3, x=4[/tex]
so
[tex]x^{2}-x-12=(x+3)(x-4)[/tex]
therefore
we have
[tex]\frac{x^{2}+2x+3}{(x+3)(x-4)}[/tex]
The values [tex]x=-3, x=4[/tex] are discontinuity of the original function