Respuesta :

Answer:

[tex]x=-3, x=4[/tex]

Step-by-step explanation:

we have

[tex]\frac{x^{2}+2x+3}{x^{2}-x-12}[/tex]

we know that

The denominator can not be zero

Find the roots of the quadratic equation of denominator

[tex]x^{2}-x-12=0[/tex]

using a graphing tool to resolve the quadratic equation

see the attached figure

The solutions are

[tex]x=-3, x=4[/tex]

so

[tex]x^{2}-x-12=(x+3)(x-4)[/tex]

therefore

we have

[tex]\frac{x^{2}+2x+3}{(x+3)(x-4)}[/tex]

The values [tex]x=-3, x=4[/tex] are discontinuity of the original function

Ver imagen calculista
RELAXING NOICE
Relax