Respuesta :
hello :
z1 × z2 = 32(cos(40° + 135°) + i sin ( 40° + 135°)
z1 × z2 = 32 (cos(175°) +i sin (175°)
z1 × z2 = 32(cos(40° + 135°) + i sin ( 40° + 135°)
z1 × z2 = 32 (cos(175°) +i sin (175°)
Answer:
Step-by-step explanation:
The given equations are:
[tex]z_{1}=8(cos40^{{\circ}}+isin40^{{\circ}})[/tex] and
[tex]z_{2}=4(cos135^{{\circ}}+isin135^{{\circ}})[/tex]
The product of [tex]z_{1}[/tex] and [tex]z_{2}[/tex] is=[tex]8(cos40^{{\circ}}+isin40^{{\circ}}){\times}4(cos135^{{\circ}}+isin135^{{\circ}})[/tex]=[tex]32(cos40^{{\circ}}cos135^{{\circ}}+isin40^{{\circ}}cos135^{{\circ}}+isin135^{{\circ}}cos40^{{\circ}}-sin40^{{\circ}}sin135^{{\circ})[/tex]
=[tex]32(cos(40+135)+isin(40+135))[/tex]
=[tex]32(cos175^{{\circ}}+isin175^{{\circ}})[/tex] whih is the required product.
