Answer:
[tex] \begin{aligned} \textsf{ Traingle} & \quad \textsf{ Rectangle} & \sf \quad \textsf{ Total Area } \\\\ \boxed{\,24 \, } &\quad \boxed{ \, 104 \, } & \sf = \boxed{ \, 128 \, } \textsf{ units}^2 \end{aligned}[/tex]
Step-by-step explanation:
To find the area of the figure, which is a combination of a triangle and a rectangle, we need to find the area of each component and then add them together.
Area of the Triangle ([tex]A_{\textsf{triangle}})[/tex]:
[tex] A_{\textsf{triangle}} = \dfrac{1}{2} \times \textsf{base} \times \textsf{height} [/tex]
[tex] A_{\textsf{triangle}} = \dfrac{1}{2} \times 6 \times 8 [/tex]
[tex] A_{\textsf{triangle}} = 24 [/tex]
Area of the Rectangle ([tex]A_{\textsf{rectangle}})[/tex]:
[tex] A_{\textsf{rectangle}} = \textsf{length} \times \textsf{width} [/tex]
[tex] A_{\textsf{rectangle}} = 13 \times 8 [/tex]
[tex] A_{\textsf{rectangle}} = 104 [/tex]
Total Area ([tex]A_{\textsf{total}})[/tex]:
[tex] A_{\textsf{total}} = A_{\textsf{triangle}} + A_{\textsf{rectangle}} [/tex]
[tex] A_{\textsf{total}} = 24 + 104 [/tex]
[tex] A_{\textsf{total}} = 128 [/tex]
Therefore, the total area of the figure is [tex]128[/tex] units²