Respuesta :

Answer:

128cm²

Step-by-step explanation:

1. Solve for the area of the triangle:

To find the area of a triangle, you can use the formula:

[tex]\[ \text{Area} = \frac{1}{2} \times \text{base} \times \text{height} \][/tex]

Given that the base is 6 units and the height is 8 units, you can plug these values into the formula:

[tex]\[ \text{Area} = \frac{1}{2} \times 6 \times 8 \]

\ \\ \text{Area} = \frac{1}{2} \times 48 \] \\

\[ \text{Area} = 24 \][/tex]

So, the area of the triangle is 24 units².

2. Solve for the area of the rectangle:

To find the area of a rectangle, you multiply its length by its width.

For a rectangle with sides of length 8 units and 13 units:

[tex]\[ \text{Area} = \text{length} \times \text{width} \] \\

\[ \text{Area} = 8 \text{unit} \times 13 \text{unit} \] \\

\ \text{Area} = 104 \text{ units}^2 \][/tex]

So, the area of the rectangle is 104 units².

3. Add both areas = 104 + 24 = 128 units²

msm555

Answer:

[tex] \begin{aligned} \textsf{ Traingle} & \quad \textsf{ Rectangle} & \sf \quad \textsf{ Total Area } \\\\ \boxed{\,24 \, } &\quad \boxed{ \, 104 \, } & \sf = \boxed{ \, 128 \, } \textsf{ units}^2 \end{aligned}[/tex]

Step-by-step explanation:

To find the area of the figure, which is a combination of a triangle and a rectangle, we need to find the area of each component and then add them together.

Area of the Triangle ([tex]A_{\textsf{triangle}})[/tex]:

[tex] A_{\textsf{triangle}} = \dfrac{1}{2} \times \textsf{base} \times \textsf{height} [/tex]

[tex] A_{\textsf{triangle}} = \dfrac{1}{2} \times 6 \times 8 [/tex]

[tex] A_{\textsf{triangle}} = 24 [/tex]

Area of the Rectangle ([tex]A_{\textsf{rectangle}})[/tex]:

[tex] A_{\textsf{rectangle}} = \textsf{length} \times \textsf{width} [/tex]

[tex] A_{\textsf{rectangle}} = 13 \times 8 [/tex]

[tex] A_{\textsf{rectangle}} = 104 [/tex]

Total Area ([tex]A_{\textsf{total}})[/tex]:

[tex] A_{\textsf{total}} = A_{\textsf{triangle}} + A_{\textsf{rectangle}} [/tex]

[tex] A_{\textsf{total}} = 24 + 104 [/tex]

[tex] A_{\textsf{total}} = 128 [/tex]

Therefore, the total area of the figure is [tex]128[/tex] units²

ACCESS MORE