Respuesta :
Answers:
radius = 8.10004 mm
diameter = 16.20008 mm
Each value is approximate. Round them however needed.
------------------------------------------------------------------
Work Shown
r = radius, d = diameter, V = volume of sphere
V = (4/3)*pi*r^3
2225 = (4/3)*3.14*r^3
2225 = 4.18667*r^3
r^3 = 2225/4.18667
r^3 = 531.44862
r = cube root of 531.44862
r = 531.44862^(1/3)
r = 8.10004 mm
d = 2*r = 2*8.10004 = 16.20008 mm
Answer:
radius: 8.1 mm
diameter: 16.2 mm
Step-by-step explanation:
The volume ([tex]V[/tex]) of a sphere is given by the formula:
[tex] V = \dfrac{4}{3} \pi r^3 [/tex]
where
- [tex]r[/tex] is the radius of the sphere.
Given that the volume of the soap bubble is [tex]2,225 \, \textsf{mm}^3[/tex] and using the value of [tex]\pi[/tex] as [tex]3.14[/tex], we can set up the equation:
[tex] 2,225 = \dfrac{4}{3} \times 3.14 \times r^3 [/tex]
Now, let's solve for [tex]r[/tex]:
[tex] r^3 = \dfrac{2,225 \times 3}{4 \times 3.14} [/tex]
[tex] r^3 = \dfrac{6,675}{12.56} [/tex]
[tex] r^3 \approx 531.4490446 [/tex]
Now, take the cube root of both sides to find [tex]r[/tex]:
[tex] r \approx \sqrt[3]{531.4490446} [/tex]
[tex] r \approx 8.100040871 \, \textsf{mm} [/tex]
[tex] r \approx 8.1\, \textsf{mm ( in nearest tenth)} [/tex]
So, the radius of the soap bubble is approximately [tex]8.1 \, \textsf{mm}[/tex].
Now, to find the diameter ([tex]d[/tex]), we simply multiply the radius by 2:
[tex] d = 2 \times r [/tex]
[tex] d \approx 2 \times 8.1 [/tex]
[tex] d \approx 16.2 \, \textsf{mm} [/tex]
So, the diameter of the soap bubble is approximately [tex]16.2 \, \textsf{mm}[/tex].