Respuesta :
[tex]f(x,y)=x^4+y^4-4xy+1[/tex]
[tex]\begin{cases}f_x=4x^3-4y\\f_y=4y^3-4x\end{cases}[/tex]
We have critical points whenever both partial derivatives vanish:
[tex]4x^3-4y=0\implies x^3=y\implies x=y^{1/3}[/tex]
[tex]4y^3-4x=0\implies y^3=x=y^{1/3}\implies y^6=y\implies y=0,y=-1,y=1[/tex]
[tex]\begin{cases}y=0\implies x=0\\y=-1\implies x=-1\\y=1\implies x=1\end{cases}[/tex]
The Hessian is
[tex]\mathbf H(x,y)=\begin{bmatrix}f_{xx}&f_{xy}\\f_{yx}&f_{yy}\end{bmatrix}=\begin{bmatrix}12x^2&-4\\-4&12y^2\end{bmatrix}[/tex]
[tex]\det\mathbf H(x,y)=(12xy)^2-16[/tex]
At (0,0), we have [tex]\det\mathbf H(0,0)=-16<0[/tex], so (0,0) is a saddle point.
At (-1, -1), we have [tex]\det\mathbf H(-1,-1)=128>0[/tex] and [tex]f_{xx}(-1,-1)=12>0[/tex], so (-1, -1) is a local minimum.
At (1, 1), we have [tex]\det\mathbf H(1,1)=128>0[/tex] and [tex]f_{xx}(1,1)=12>0[/tex], so (1, 1) is also a local minimum.
[tex]\begin{cases}f_x=4x^3-4y\\f_y=4y^3-4x\end{cases}[/tex]
We have critical points whenever both partial derivatives vanish:
[tex]4x^3-4y=0\implies x^3=y\implies x=y^{1/3}[/tex]
[tex]4y^3-4x=0\implies y^3=x=y^{1/3}\implies y^6=y\implies y=0,y=-1,y=1[/tex]
[tex]\begin{cases}y=0\implies x=0\\y=-1\implies x=-1\\y=1\implies x=1\end{cases}[/tex]
The Hessian is
[tex]\mathbf H(x,y)=\begin{bmatrix}f_{xx}&f_{xy}\\f_{yx}&f_{yy}\end{bmatrix}=\begin{bmatrix}12x^2&-4\\-4&12y^2\end{bmatrix}[/tex]
[tex]\det\mathbf H(x,y)=(12xy)^2-16[/tex]
At (0,0), we have [tex]\det\mathbf H(0,0)=-16<0[/tex], so (0,0) is a saddle point.
At (-1, -1), we have [tex]\det\mathbf H(-1,-1)=128>0[/tex] and [tex]f_{xx}(-1,-1)=12>0[/tex], so (-1, -1) is a local minimum.
At (1, 1), we have [tex]\det\mathbf H(1,1)=128>0[/tex] and [tex]f_{xx}(1,1)=12>0[/tex], so (1, 1) is also a local minimum.
At (1,1) and (-1,-1) there is minimum value and at (0,0) is the saddle point.
Given-
Given function is-
[tex]f(x,y)=x^4+y^4-4xy+1[/tex]
Locate the critical points,(use the derivation with respect to x and y)
[tex]f'(x)=4x^3-4y\\\\f'(y)=4y^3-4x[/tex]
Equate the above partial derivatives to the zero, we get.]
[tex]4x^3-4y=0\\\\x^3=y[/tex]
The value of x is obtained. Solve the equation two and put this value of x in that equation, we get,
[tex]4y^3-4x=0\\y^3-x=0[/tex]
Put the value of x, we get,
[tex]x^9-x=0[/tex]
[tex]x(x^8-1)=0[/tex]
from above equation we get one value of [tex]x[/tex] is zero.
[tex]x^8-1=0[/tex]
To the above equation we can rewrite,
[tex]x^2-1=0[/tex]
[tex](x-1)(x+1)=0[/tex]
hence we get three values of the [tex]x[/tex] (0,1,-1)
From the equation of partial derivative equation, we get that
[tex]x=0; y=0[/tex]
[tex]x=1;y=1[/tex]
[tex]x=-1;y=-1[/tex]
Thus three critical points are (0,0),(1,1) nd(-1,-1). Now calculate second partial derivative and D(x,y).
[tex]f"(x)=12x^2-0[/tex]
[tex]f'(xy)=-4[/tex]
[tex]f"(y)=12y^2-1[/tex]
[tex]D(x,y)=f"(x)f"(y)-f'(xy)^2[/tex]
[tex]D(x,y)=144x^2y^2-16[/tex]
Check at critical points,
[tex]D(0,0)=-16<0[/tex]
thus no local minima or maxima at point (0,0). this is the saddle point.
[tex]D(1,1)=12>0[/tex]
so (1, 1) is a local minimum.
[tex]D(-1,-1)=12>0[/tex]
so (-1, -1) is a local minimum.
Hence at (1,1) and (-1,-1) there is minimum value and at (0,0) is the saddle point.
For more about the maxima and minima follow the link given below-
https://brainly.com/question/6422517