Minimize [tex](x-16)^2+(y-6)^2+z^2[/tex] subject to [tex]z^2=x^2+y^2[/tex]. The Lagrangian would be
[tex]L(x,y,z,\lambda)=(x-16)^2+(y-6)+z^2+\lambda(z^2-x^2-y^2)[/tex]
and has partial derivatives
[tex]\begin{cases}L_x=2(x-16)-2\lambda x\\L_y=2(y-6)-2\lambda y\\L_z=2z+2\lambda z\\L_\lambda z^2-x^2-y^2\end{cases}[/tex]
Setting each partial derivative to 0, we have
[tex]\begin{cases}2(x-16)-2\lambda x=0\implies (1-\lambda)x=16\\2(y-6)-2\lambda y=0\implies(1-\lambda)y=6\\2z+2\lambda z=0\implies(1+\lambda)z=0\\z^2-x^2-y^2=0\implies z^2=x^2+y^2\end{cases}[/tex]
From the third equation, it follows that either [tex]\lambda=-1[/tex] or [tex]z=0[/tex]. In the second case, we arrive at a contradiction:
[tex]z^2=x^2+y^2=0\implies x=y=0[/tex]
since both [tex]x^2[/tex] and [tex]y^2[/tex] must be non-negative, yet this would mean e.g. [tex](1-\lambda)x=0=16[/tex]. So it must be that [tex]\lambda=-1[/tex].
The first and second equations then tell us that
[tex](1-\lambda)x=2x=16\implies x=8[/tex]
[tex](1-\lambda)y=2y=6\implies y=3[/tex]
from which we obtain [tex]z^2=8^2+3^2=73\implies z=\pm\sqrt{73}[/tex].
Thus the points on the cone closest to (16, 6, 0) are [tex](8,3,\pm\sqrt{73})[/tex].