Minimize [tex]x+y+z[/tex] subject to [tex]xyz=64[/tex]. Using Lagrange multipliers, we can take the Lagrangian
[tex]L(x,y,z,\lambda)=x+y+z+\lambda(xyz-64)[/tex]
which has partial derivatives (set to 0)
[tex]\begin{cases}L_x=1+\lambda yz=0\\L_y=1+\lambda xz=0\\L_z=1+\lambda xy=0\\L_\lambda=xyz-64=0\implies xyz=64\end{cases}[/tex]
From the first three equations, pick any two and subtract them from one another. You'll arrive at the following symmetric relations:
[tex]\begin{cases}(1+\lambda yz)-(1+\lambda xz)=0\implies \lambda(y-x)z=0\\\lambda(z-y)x=0\\\lambda(z-x)y=0\end{cases}[/tex]
We assume [tex]\lambda\neq0[/tex], and we know that [tex]xyz=64[/tex] so that we can omit the possibilities of [tex]x=0[/tex], [tex]y=0[/tex], and [tex]z=0[/tex]. This leaves us with [tex]x=y=z[/tex], and so
[tex]xyz=64=x^3=y^3=z^3\implies x=y=z=4[/tex].