Let f(x,y,z) = ztan-1(y2) i + z3ln(x2 + 1) j + z k. find the flux of f across the part of the paraboloid x2 + y2 + z = 3 that lies above the plane z = 2 and is oriented upward.

Respuesta :

Consider the closed region [tex]V[/tex] bounded simultaneously by the paraboloid and plane, jointly denoted [tex]S[/tex]. By the divergence theorem,

[tex]\displaystyle\iint_S\mathbf f(x,y,z)\cdot\mathrm dS=\iiint_V\nabla\cdot\mathbf f(x,y,z)\,\mathrm dV[/tex]

And since we have

[tex]\nabla\cdot\mathbf f(x,y,z)=1[/tex]

the volume integral will be much easier to compute. Converting to cylindrical coordinates, we have

[tex]\displaystyle\iiint_V\nabla\cdot\mathbf f(x,y,z)\,\mathrm dV=\iiint_V\mathrm dV[/tex]
[tex]=\displaystyle\int_{\theta=0}^{\theta=2\pi}\int_{r=0}^{r=1}\int_{z=2}^{z=3-r^2}r\,\mathrm dz\,\mathrm dr\,\mathrm d\theta[/tex]
[tex]=\displaystyle2\pi\int_{r=0}^{r=1}r(3-r^2-2)\,\mathrm dr[/tex]
[tex]=\dfrac\pi2[/tex]

Then the integral over the paraboloid would be the difference of the integral over the total surface and the integral over the disk. Denoting the disk by [tex]D[/tex], we have

[tex]\displaystyle\iint_{S-D}\mathbf f\cdot\mathrm dS=\frac\pi2-\iint_D\mathbf f\cdot\mathrm dS[/tex]

Parameterize [tex]D[/tex] by

[tex]\mathbf s(u,v)=u\cos v\,\mathbf i+u\sin v\,\mathbf j+2\,\mathbf k[/tex]
[tex]\implies\mathbf s_u\times\mathbf s_v=u\,\mathbf k[/tex]

which would give a unit normal vector of [tex]\mathbf k[/tex]. However, the divergence theorem requires that the closed surface [tex]S[/tex] be oriented with outward-pointing normal vectors, which means we should instead use [tex]\mathbf s_v\times\mathbf s_u=-u\,\mathbf k[/tex].

Now,

[tex]\displaystyle\iint_D\mathbf f\cdot\mathrm dS=\int_{u=0}^{u=1}\int_{v=0}^{v=2\pi}\mathbf f(x(u,v),y(u,v),z(u,v))\cdot(-u\,\mathbf k)\,\mathrm dv\,\mathrm du[/tex]
[tex]=\displaystyle-4\pi\int_{u=0}^{u=1}u\,\mathrm du[/tex]
[tex]=-2\pi[/tex]

So, the flux over the paraboloid alone is

[tex]\displaystyle\iint_{S-D}\mathbf f\cdot\mathrm dS=\frac\pi2-(-2\pi)=\dfrac{5\pi}2[/tex]
ACCESS MORE