Respuesta :
Consider the closed region [tex]V[/tex] bounded simultaneously by the paraboloid and plane, jointly denoted [tex]S[/tex]. By the divergence theorem,
[tex]\displaystyle\iint_S\mathbf f(x,y,z)\cdot\mathrm dS=\iiint_V\nabla\cdot\mathbf f(x,y,z)\,\mathrm dV[/tex]
And since we have
[tex]\nabla\cdot\mathbf f(x,y,z)=1[/tex]
the volume integral will be much easier to compute. Converting to cylindrical coordinates, we have
[tex]\displaystyle\iiint_V\nabla\cdot\mathbf f(x,y,z)\,\mathrm dV=\iiint_V\mathrm dV[/tex]
[tex]=\displaystyle\int_{\theta=0}^{\theta=2\pi}\int_{r=0}^{r=1}\int_{z=2}^{z=3-r^2}r\,\mathrm dz\,\mathrm dr\,\mathrm d\theta[/tex]
[tex]=\displaystyle2\pi\int_{r=0}^{r=1}r(3-r^2-2)\,\mathrm dr[/tex]
[tex]=\dfrac\pi2[/tex]
Then the integral over the paraboloid would be the difference of the integral over the total surface and the integral over the disk. Denoting the disk by [tex]D[/tex], we have
[tex]\displaystyle\iint_{S-D}\mathbf f\cdot\mathrm dS=\frac\pi2-\iint_D\mathbf f\cdot\mathrm dS[/tex]
Parameterize [tex]D[/tex] by
[tex]\mathbf s(u,v)=u\cos v\,\mathbf i+u\sin v\,\mathbf j+2\,\mathbf k[/tex]
[tex]\implies\mathbf s_u\times\mathbf s_v=u\,\mathbf k[/tex]
which would give a unit normal vector of [tex]\mathbf k[/tex]. However, the divergence theorem requires that the closed surface [tex]S[/tex] be oriented with outward-pointing normal vectors, which means we should instead use [tex]\mathbf s_v\times\mathbf s_u=-u\,\mathbf k[/tex].
Now,
[tex]\displaystyle\iint_D\mathbf f\cdot\mathrm dS=\int_{u=0}^{u=1}\int_{v=0}^{v=2\pi}\mathbf f(x(u,v),y(u,v),z(u,v))\cdot(-u\,\mathbf k)\,\mathrm dv\,\mathrm du[/tex]
[tex]=\displaystyle-4\pi\int_{u=0}^{u=1}u\,\mathrm du[/tex]
[tex]=-2\pi[/tex]
So, the flux over the paraboloid alone is
[tex]\displaystyle\iint_{S-D}\mathbf f\cdot\mathrm dS=\frac\pi2-(-2\pi)=\dfrac{5\pi}2[/tex]
[tex]\displaystyle\iint_S\mathbf f(x,y,z)\cdot\mathrm dS=\iiint_V\nabla\cdot\mathbf f(x,y,z)\,\mathrm dV[/tex]
And since we have
[tex]\nabla\cdot\mathbf f(x,y,z)=1[/tex]
the volume integral will be much easier to compute. Converting to cylindrical coordinates, we have
[tex]\displaystyle\iiint_V\nabla\cdot\mathbf f(x,y,z)\,\mathrm dV=\iiint_V\mathrm dV[/tex]
[tex]=\displaystyle\int_{\theta=0}^{\theta=2\pi}\int_{r=0}^{r=1}\int_{z=2}^{z=3-r^2}r\,\mathrm dz\,\mathrm dr\,\mathrm d\theta[/tex]
[tex]=\displaystyle2\pi\int_{r=0}^{r=1}r(3-r^2-2)\,\mathrm dr[/tex]
[tex]=\dfrac\pi2[/tex]
Then the integral over the paraboloid would be the difference of the integral over the total surface and the integral over the disk. Denoting the disk by [tex]D[/tex], we have
[tex]\displaystyle\iint_{S-D}\mathbf f\cdot\mathrm dS=\frac\pi2-\iint_D\mathbf f\cdot\mathrm dS[/tex]
Parameterize [tex]D[/tex] by
[tex]\mathbf s(u,v)=u\cos v\,\mathbf i+u\sin v\,\mathbf j+2\,\mathbf k[/tex]
[tex]\implies\mathbf s_u\times\mathbf s_v=u\,\mathbf k[/tex]
which would give a unit normal vector of [tex]\mathbf k[/tex]. However, the divergence theorem requires that the closed surface [tex]S[/tex] be oriented with outward-pointing normal vectors, which means we should instead use [tex]\mathbf s_v\times\mathbf s_u=-u\,\mathbf k[/tex].
Now,
[tex]\displaystyle\iint_D\mathbf f\cdot\mathrm dS=\int_{u=0}^{u=1}\int_{v=0}^{v=2\pi}\mathbf f(x(u,v),y(u,v),z(u,v))\cdot(-u\,\mathbf k)\,\mathrm dv\,\mathrm du[/tex]
[tex]=\displaystyle-4\pi\int_{u=0}^{u=1}u\,\mathrm du[/tex]
[tex]=-2\pi[/tex]
So, the flux over the paraboloid alone is
[tex]\displaystyle\iint_{S-D}\mathbf f\cdot\mathrm dS=\frac\pi2-(-2\pi)=\dfrac{5\pi}2[/tex]