Respuesta :
Answer:
Option B- 91.44 is the correct Answer.
Step-by-step explanation:
Cesar only has 12 months left before he pays off his credit card completely.
His current balance = $3,750
APR = 17.5%
Now we use the formula :
PV of annuity = [tex]P=[\frac{1-(1+r)^{-n} }{r}][/tex]
PV = Present Value
P = Periodic payment
r = rate per period
n = number of period
case 1 :
PV of annuity = $3,750
P = ?
r = 17.5% annually = [tex]\frac{17.5}{12}[/tex]% monthly [tex]\frac{17.5}{1200}[/tex] monthly
n = 12 months
Now we put the values in formula
[tex]= 3750 = P[\frac{1-(1+\frac{17.5}{1200})^{-12}}{\frac{17.5}{1200}}][/tex]
⇒ P= [tex]\frac{3750}{[\frac{1-(1+\frac{17.5}{1200})^{-12} }{\frac{17.5}{1200} }]}[/tex]
⇒ P = [tex]\frac{3750}{\frac{1-0.8405}{0.01458} }[/tex]
⇒ P = [tex]\frac{3750}{\frac{0.1595}{0.01458} }[/tex]
⇒ P = 342.91
Case 2 :
PV of annuity = 3750 + 1000 = 4750
P = ?
r = 17.5% annually = [tex]\frac{17.5}{12}[/tex]% monthly = [tex]\frac{17.5}{1200}[/tex] monthly
n = 12 months
Putting the values in formula
[tex]= 4750 = P[\frac{1-(1+\frac{17.5}{1200})^{-12}}{\frac{17.5}{1200} }][/tex]
⇒ P= [tex]\frac{4750}{[\frac{1-(1+\frac{17.5}{1200})^{-12} }{\frac{17.5}{1200} }]}[/tex]
⇒ P = [tex]\frac{4750}{\frac{1-0.8405}{0.01458} }[/tex]
⇒ P = [tex]\frac{4750}{\frac{0.1595}{0.01458} }[/tex]
⇒ P = 434.35
Cesar's increased monthly payment will be
434.35 - 342.91 = 91.44