We are given the following:
Bobo's swimming speed = 2.0 m/s
Width of the river = 100 m
Flowrate of the river = 6.0 m/s due east
First, we need to illustrate the problem. Draw the river with a width of 100 meters. Then, the flow of the river, east at 6 meters per second. Lastly, draw Bobo at one side of the river facing north and an arrow representing swimming speed at 2 meters per second.
Now, we can use the Pythagorean theorem to solve this rate problem.
c^2 = a^2 + b^2
c = speed of Bobo needed
a = speed of Bobo facing north
b = flow rate of the river going east
c^2 = 2^2 + 6^2
c = 6.32 m / s should be his speed to overcome the current and make a landing at the desired location.