Respuesta :
[tex]\bf \qquad \textit{Amount for Exponential Growth}\\\\
A=I(1 + r)^t\qquad
\begin{cases}
A=\textit{accumulated amount}\\
I=\textit{initial amount}\\
r=rate\to r\%\to \frac{r}{100}\\
t=\textit{elapsed time}
\end{cases}\\\\
-------------------------------\\\\
y=50(1.75)^t\implies
\begin{array}{llllll}
y=&50(&1+&0.75)&^t\\
\uparrow &\uparrow &&\uparrow &\uparrow \\
A&I&&r&t
\end{array}\qquad \cfrac{r}{100}=0.75
\\\\\\
r=100\cdot 0.75\implies \boxed{r=75\%}[/tex]
the amount is a positive "r", rate, thus is a growth equation, so it increased.
the amount is a positive "r", rate, thus is a growth equation, so it increased.