Rewrite the rectangular form of the complex number z= - sq root 3+i in its equivalent polar form. Approximate all angle measures to the nearest degree.

z=10(cos(-30)+ i sin(-30))
z=2(cos 150+ i sin 150)
z=2(cos(-30)+ i sin(-30))
z=10 (cos 150+ i sin 150)

Respuesta :

Given a complex number : [tex]z = a + bi[/tex]

[tex]r = \sqrt{a^2 + b^2} \\ \\ r = \sqrt{(-\sqrt{3})^2+1^2} \\ \\ r = 2[/tex]

To determine the angle:
[tex]\theta = tan^{-1} (\frac{b}{a}) \\ \\ \theta = tan^{-1} (-\frac{1}{\sqrt{3}}) \\ \\ \theta = -30, 150[/tex]
The 'cos' term is negative and the 'sin' term is positive, therefore theta must be in 2nd quadrant.
[tex]\theta = 150[/tex]

Final Answer:
[tex]z = 2(cos 150 + i sin 150)[/tex]

Answer:

z=2(cos 150+ i sin 150) is the correct answer. I just did this lesson and got it right, hope this helps!

ACCESS MORE
EDU ACCESS