Respuesta :
Given a complex number : [tex]z = a + bi[/tex]
[tex]r = \sqrt{a^2 + b^2} \\ \\ r = \sqrt{(-\sqrt{3})^2+1^2} \\ \\ r = 2[/tex]
To determine the angle:
[tex]\theta = tan^{-1} (\frac{b}{a}) \\ \\ \theta = tan^{-1} (-\frac{1}{\sqrt{3}}) \\ \\ \theta = -30, 150[/tex]
The 'cos' term is negative and the 'sin' term is positive, therefore theta must be in 2nd quadrant.
[tex]\theta = 150[/tex]
Final Answer:
[tex]z = 2(cos 150 + i sin 150)[/tex]
[tex]r = \sqrt{a^2 + b^2} \\ \\ r = \sqrt{(-\sqrt{3})^2+1^2} \\ \\ r = 2[/tex]
To determine the angle:
[tex]\theta = tan^{-1} (\frac{b}{a}) \\ \\ \theta = tan^{-1} (-\frac{1}{\sqrt{3}}) \\ \\ \theta = -30, 150[/tex]
The 'cos' term is negative and the 'sin' term is positive, therefore theta must be in 2nd quadrant.
[tex]\theta = 150[/tex]
Final Answer:
[tex]z = 2(cos 150 + i sin 150)[/tex]
Answer:
z=2(cos 150+ i sin 150) is the correct answer. I just did this lesson and got it right, hope this helps!